As previously predicted [Appl. Opt. 40, 5583 (2001)], we have now observed electric field-induced diffraction peaks in transmission and reflection experiments by use of a LiNbO3 sample with interdigital planar electrodes that serve as a diffraction grating. The magnitudes of the new peaks in the reflection experiments are ten times larger than those in the transmission experiments. We interpret these effects in terms of a field-induced refractive-index change produced by the linear electro-optic effect. The positive and negative changes in the refractive index produce two diffraction gratings that are period doubled with respect to the original grating and that have a phase difference between them. The superposition of the diffracted light from these gratings is shown to account for the new peaks. From the relative magnitude of the new peak to that of the central peak, we estimate the refractive-index change to be 0.004.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ao.41.005845 | DOI Listing |
Alzheimers Dement
December 2024
Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife, Boston, MA, USA
Background: Alzheimer’s disease (AD) affects over 55 million people worldwide and is characterized by abnormal deposition of amyloid‐β and tau in the brain causing neuronal damage and disrupting transmission within brain circuits. Episodic memory loss, executive deficits, and depression are common symptoms arising from altered function in spatially distinct brain circuits that greatly contribute to disability. Transcranial electrical stimulation (tES) can target these circuits and has shown promise to relieve specific symptoms.
View Article and Find Full Text PDFSmall
January 2025
School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, 200093, China.
Smart delivery materials that respond to electric fields attract interest across various fields, whereas systems enabling rapid, controllable, and safe delivery capabilities remain essential. Based on the hypothesis of utilizing electric field to manipulate inter-component noncovalent bonds in delivery materials, a hydrogel system is hereby reported that is capable of achieving rapid guest release at low-voltage region. This system harnesses the synergistic regulation of electric field-induced host-guest electrostatic repulsion, alongside the dynamic modulation of H-bond interactions within the conductive hydrogel.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom.
Below a critical temperature [Formula: see text], superconductors transport electrical charge without dissipative energy losses. The application of a magnetic field [Formula: see text] generally acts to suppress [Formula: see text], up to some critical field strength at which [Formula: see text] 0 K. Here, we investigate magnetic field-induced superconductivity in high-quality specimens of the triplet superconductor candidate UTe[Formula: see text] in pulsed magnetic fields up to [Formula: see text] [Formula: see text] 70 T.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Dankook University, 119, Dandae-ro, Chungnam 448-701, Korea.
This paper presents the reversible transformation between two polymorphs of a hexacatenar liquid crystal () with distinct fluorescence colors at room temperature (RT). This method utilizes mechanical pressure (mechanochromism) and an electric field (E-field-chromism). The molecule (), designed with a pyrene core and 1,2,3-triazole linkers, exhibits a blue-emissive crystalline (CRY) polymorph () and a green-emissive liquid crystalline (LC) polymorph () at RT, depending on the cooling rate from the liquid phase.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong Provincial Research Center on Smart Materials and Energy Conversion Devices, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, School of Electromechanical Engineering and School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China.
Lead-based antiferroelectric (AFE) ceramics have the advantages of high power density, fast charge and discharge speed, and the electric-field-induced AFE-FE phase transition, making them one of the potential dielectric energy storage materials. However, the energy storage density still needs to be improved. In this work, (PbCa) (ZrSn)O (PCZS, = 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!