Download full-text PDF

Source

Publication Analysis

Top Keywords

response microvasculature
4
microvasculature experimental
4
experimental mammary
4
mammary tumors
4
tumors c3h
4
c3h mice
4
mice selected
4
selected vasoactive
4
vasoactive drugs
4
response
1

Similar Publications

A New Approach to Non-Invasive Microcirculation Monitoring: Quantifying Capillary Refill Time Using Oximetric Pulse Waves.

Sensors (Basel)

January 2025

Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, 168 Litang Road, Changping District, Beijing 102218, China.

(1) Background: To develop a novel capillary refill time measurement system and evaluate its reliability and reproducibility. (2) Methods: Firstly, the utilization of electromagnetic pressure technology facilitates the automatic compression and instantaneous release of the finger. Secondly, the employment of pressure sensing technology and photoelectric volumetric pulse wave analysis technology enables the dynamic monitoring of blood flow in distal tissues.

View Article and Find Full Text PDF

Guanidinoacetic acid (GAA), a precursor of creatine, has a recognized effect on ruminant performance when used as a dietary supplement. However, its impact on reproductive response remains to be elucidated. Therefore, this study aimed to contribute initially to this area by supplementing the diets of ewes with a high dose of GAA, evaluating its effects on reproductive response.

View Article and Find Full Text PDF

Modeling of Blood Flow Dynamics in Rat Somatosensory Cortex.

Biomedicines

December 2024

Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, 1202 Geneva, Switzerland.

The cerebral microvasculature forms a dense network of interconnected blood vessels where flow is modulated partly by astrocytes. Increased neuronal activity stimulates astrocytes to release vasoactive substances at the endfeet, altering the diameters of connected vessels. Our study simulated the coupling between blood flow variations and vessel diameter changes driven by astrocytic activity in the rat somatosensory cortex.

View Article and Find Full Text PDF

Vascular HIF2 Signaling Prevents Cardiomegaly, Alveolar Congestion, and Capillary Remodeling During Chronic Hypoxia.

Arterioscler Thromb Vasc Biol

January 2025

Metabolic and Immune Diseases Department, Biomedical Research Institute Sols-Morreale (IIBM), National Research Council (CSIC), Autonoma University of Madrid, Spain (T.A.-G., S.M.-T., R.C.-M., S.U.-B., S.M.-P.).

Background: Hypoxia is associated with the onset of cardiovascular diseases including cardiac hypertrophy and pulmonary hypertension. HIF2 (hypoxia-inducible factor 2) signaling in the endothelium mediates pulmonary arterial remodeling and subsequent elevation of the right ventricular systolic pressure during chronic hypoxia. Thus, novel therapeutic opportunities for pulmonary hypertension based on specific HIF2 inhibitors have been proposed.

View Article and Find Full Text PDF

The olfactory bulb receives cholinergic basal forebrain inputs as does the neocortex. With a focus on nicotinic acetylcholine receptors (nAChRs), this review article provides an overview and discussion of the following findings: (1) the nAChRs-mediated regulation of regional blood flow in the neocortex and olfactory bulb, (2) the nAChR subtypes that mediate their responses, and (3) their activity in old rats. The activation of the α4β2-like subtype of nAChRs produces vasodilation in the neocortex, and potentiates olfactory bulb vasodilation induced by olfactory stimulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!