Landfill leachate recirculation is efficient in reducing the leachate quantity handled by a leachate treatment plant. However, after land application of leachate, nitrification and denitrification of the ammoniacal N becomes possible and the greenhouse gas nitrous oxide (N2O) is produced. Lack of information on the effects of leachate recirculation on N2O production led to a field study being conducted in the Likang Landfill (Guangzhou, China) where leachate recirculation had been practiced for 8 yr. Monthly productions and fluxes of N2O from leachate and soil were studied from June to November 2000. Environmental and chemical factors regulating N2O production were also accessed. An impermeable top liner was not used at this site; municipal solid waste was simply covered by inert soil and compacted by bulldozers. A high N2O emission rate (113 mg m-2 h-1) was detected from a leachate pond purposely formed on topsoil within the landfill boundary after leachate irrigation. A high N2O level (1.09 micrograms L-1) was detected in a gas sample emitted from topsoil 1 m from the leachate pond. Nitrous oxide production from denitrification in leachate-contaminated soil was at least 20 times higher than that from nitrification based on laboratory incubation studies. The N2O levels emitted from leachate ponds were compared with figures reported for different ecosystems and showed that the results of the present study were 68.7 to 88.6 times higher. Leachate recirculation can be a cost-effective operation in reducing the volume of leachate to be treated in landfill. However, to reduce N2O flux, leachate should be applied to underground soil rather than being irrigated and allowed to flow on topsoil.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2134/jeq2002.1502 | DOI Listing |
J Environ Manage
December 2024
Dept. of Civil Engineering, Indian Institute of Science, Bangalore, 560012, India.
The study evaluates the effectiveness of aged refuse bioreactors (ARBs) in treating young landfill leachate and recovering energy through biogas production. Over 90 days, duplicate reactors (ARB1 and ARB2) were operated through three 30-day recirculation cycles under anaerobic conditions, utilizing aged refuse from a closed landfill in Bangalore, India. The study was extended by an additional 900 days without further leachate addition to assess long-term gas generation potential.
View Article and Find Full Text PDFBioresour Technol
December 2024
Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China. Electronic address:
Waste Manag Res
August 2024
Department of Civil and Environmental Engineering, Carleton University, Ottawa, ON, Canada.
J Environ Manage
September 2024
Department of Civil, Energy, Environmental and Materials Engineering, Università Mediterranea di Reggio Calabria, Via Zehender - loc. Feo di Vito, 89122, Reggio Calabria, Italy. Electronic address:
Microbiology (Reading)
July 2024
School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FF, UK.
In recent years, the demand for lithium-ion batteries (LIBs) has been increasing rapidly. Conventional recycling strategies (based on pyro- and hydrometallurgy) are damaging for the environment and more sustainable methods need to be developed. Bioleaching is a promising environmentally friendly approach that uses microorganisms to solubilize metals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!