A helical array of pendant fullerenes on an optically active polyphenylacetylene.

Angew Chem Int Ed Engl

Department of Molecular Design and Engineering Graduate School of Engineering, Nagoya University Chikusa-ku, Nagoya 464-8603, Japan.

Published: October 2002

Download full-text PDF

Source
http://dx.doi.org/10.1002/1521-3773(20021004)41:19<3602::AID-ANIE3602>3.0.CO;2-4DOI Listing

Publication Analysis

Top Keywords

helical array
4
array pendant
4
pendant fullerenes
4
fullerenes optically
4
optically active
4
active polyphenylacetylene
4
helical
1
pendant
1
fullerenes
1
optically
1

Similar Publications

Structures of methane and ammonia monooxygenases in native membranes.

Proc Natl Acad Sci U S A

January 2025

Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, IL 60208.

Methane- and ammonia-oxidizing bacteria play key roles in the global carbon and nitrogen cycles, respectively. These bacteria use homologous copper membrane monooxygenases to accomplish the defining chemical transformations of their metabolisms: the oxidations of methane to methanol by particulate methane monooxygenase (pMMO) and ammonia to hydroxylamine by ammonia monooxygenase (AMO), enzymes of prime interest for applications in mitigating climate change. However, investigations of these enzymes have been hindered by the need for disruptive detergent solubilization prior to structure determination, confounding studies of pMMO and precluding studies of AMO.

View Article and Find Full Text PDF

Methods to prepare and characterize neutron helical waves carrying orbital angular momentum (OAM) were recently demonstrated at small-angle neutron scattering (SANS) facilities. These methods enable access to the neutron orbital degree of freedom which provides new avenues of exploration in fundamental science experiments as well as in material characterization applications. However, it remains a challenge to recover phase profiles from SANS measurements.

View Article and Find Full Text PDF

Owing to its topological properties and band collapse, Floquet helical photonic lattices have gained increasing attention as a purely classical setting to realize the optical analogues of a wide variety of quantum phenomena. We demonstrate both theoretically and numerically that light propagation in an appropriately designed helical superlattice can exhibit spatial photonic Zitterbewegung effect, i.e.

View Article and Find Full Text PDF

Chiroptical response of an array of isotropic plasmonic particles having a chiral arrangement under coherent interaction.

Photochem Photobiol Sci

December 2024

Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, 980-8577, Japan.

The chirality and chiroptical response of materials have attracted significant attention for their potential to introduce the new science of light-matter interactions. We demonstrate that collective mode formation under modal coupling between localized surface plasmon resonances (LSPRs) with a chiral arrangement and Fabry-Pérot (FP) nanocavity modes can induce chiroptical responses. We fabricated a cluster of isotropic gold nanodisks with a chiral arrangement (gold nano-windmills, Au-NWs) on the FP nanocavities of TiO and Au film.

View Article and Find Full Text PDF

C-H bond functionalisation has developed into a powerful synthetic methodology that is applicable to a wide array of substrates, including organometallic compounds. In this study, racemic, planar-chiral 1,2-dihydroferroceno[]isoquinoline and analogous helical compounds with one or two additional -fused benzene rings were synthesised by palladium-catalysed C-H bond activation/cyclisation of -[(bromoaryl)methyl]--(methylsulfonyl)aminoferrocenes. These starting materials are readily accessible from FcNHSOMe (Fc = ferrocenyl) and appropriate vicinal bromo-(bromomethyl)arenes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!