Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/1521-3773(20021004)41:19<3595::AID-ANIE3595>3.0.CO;2-B | DOI Listing |
Angew Chem Int Ed Engl
November 2024
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
Starting from AIEgen-functionalized chiral [2]rotaxane building block, we have successfully synthesized a new class of chiral rotaxane-branched dendrimers through controllable divergent strategy for the first time, based on which novel chiral artificial light-harvesting systems (LHSs) were successfully constructed in aqueous phase by sequentially introducing achiral donor and acceptor. More importantly, accompanied by the two-step Förster resonance energy transfer (FRET) process in the resultant artificial LHSs, the sequentially amplified circularly polarized luminescence (CPL) performances were achieved, highlighting that the chiral rotaxane-branched dendrimers could serve as excellent relay for both energy transfer and chirality transmission. Impressively, compared with the sole chiral rotaxane-branched dendrimers, the dissymmetry factors (g) values of the resultant artificial LHSs were amplified by one order of magnitude up to 0.
View Article and Find Full Text PDFChem Sci
August 2024
Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET B1876BXD Bernal Argentina
The efficiency of light-harvesting and energy transfer in multi-chromophore ensembles underpins natural photosynthesis. Dendrimers are highly branched synthetic multi-chromophoric conjugated supra-molecules that mimic these natural processes. After photoexcitation, their repeated units participate in a number of intramolecular electronic energy relaxation and redistribution pathways that ultimately funnel to a sink.
View Article and Find Full Text PDFInt J Mol Sci
March 2024
Laboratoire de Chimie de Coordination (LCC) du CNRS, 205 Route de Narbonne, 31077 Toulouse Cedex 4, France.
This review describes the two-photon absorption properties of dendrimers, which are arborescent three-dimensional macromolecules differing from polymers by their perfectly defined structure. The two-photon absorption process is a third order non-linear optical property that is attractive because it can be used in a wide range of applications. In this review, dendrimers that were studied for their two-photon absorption properties are first described.
View Article and Find Full Text PDFJ Chem Phys
March 2024
ICGM, Univ Montpellier, CNRS, ENSC, Montpellier, France.
The light-harvesting excitonic properties of poly(phenylene ethynylene) (PPE) extended dendrimers (tree-like π-conjugated macromolecules) involve a directional cascade of local excitation energy transfer (EET) processes occurring from the "leaves" (shortest branches) to the "trunk" (longest branch), which can be viewed from a vibronic perspective as a sequence of internal conversions occurring among a connected graph of nonadiabatically coupled locally excited electronic states via conical intersections. The smallest PPE building block that is able to exhibit EET, the asymmetrically meta-substituted PPE oligomer with one acetylenic bond on one side and two parallel ones on the other side (hence, 2-ring and 3-ring para-substituted pseudo-fragments), is a prototype and the focus of the present work. From linear-response time-dependent density functional theory electronic-structure calculations of the molecule as regards its first two nonadiabatically coupled, optically active, singlet excited states, we built a (1 + 2)-state-8-dimensional vibronic-coupling Hamiltonian model for running subsequent multiconfiguration time-dependent Hartree wavepacket relaxations and propagations, yielding both steady-state absorption and emission spectra as well as real-time dynamics.
View Article and Find Full Text PDFJ Chem Phys
March 2023
ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
1,3-Bis(phenylethynyl)benzene is the primary chromophore of the light-harvesting polyphenylene ethynylene (PPE) dendrimers. It is experimentally known to share the same absorption spectrum as its pair of diphenylacetylene (aka. tolane) meta-substituted branches yet exhibits an unusual Stokes shift of about 2000 cm with respect to its band origin (corresponding to the loss of one vibrational quantum within the antisymmetric acetylenic stretching) in its emission spectrum.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!