DNA polymerase fidelity or specificity expresses the ability of a polymerase to select a correct nucleoside triphosphate (dNTP) from a pool of structurally similar molecules. Fidelity is quantified from the ratio of specificity constants (catalytic efficiencies) for alternate substrates (i.e. correct and incorrect dNTPs). An analysis of the efficiency of dNTP (correct and incorrect) insertion for a low fidelity mutant of DNA polymerase beta (R283A) and exonuclease-deficient DNA polymerases from five families derived from a variety of biological sources reveals that a strong correlation exists between the ability to synthesize DNA and the probability that the polymerase will make a mistake (i.e. base substitution error). Unexpectedly, this analysis indicates that the difference between low and high fidelity DNA polymerases is related to the efficiency of correct, but not incorrect, nucleotide insertion. In contrast to the loss of fidelity observed with the catalytically inefficient R283A mutant, the fidelity of another inefficient mutant of DNA polymerase beta (G274P) is not altered. Thus, although all natural low fidelity DNA polymerases are inefficient, not every inefficient DNA polymerase has low fidelity. Low fidelity polymerases appear to be an evolutionary solution to how to replicate damaged DNA or DNA repair intermediates without burdening the genome with excessive polymerase-initiated errors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M210036200 | DOI Listing |
Mol Biol Rep
January 2025
Department of Clinical Pathology, San Giovanni Addolorata Hospital, Rome, Italy.
Background: Ovarian Cancer is one of the leading causes of cancer death among women worldwide and the therapeutic landscape to treat it is constantly evolving. One of the major points of decision for the treatment choice is the presence of some genomic alterations that could confer sensitivity to the new available therapies including inhibitors of poly (ADP-ribose) polymerase (PARPi) with BRCA1 and 2 genes playing the most important role.
Methods And Results: We performed the search for any somatic and/or germline alteration in patient's samples by next generation sequencing (NGS).
Theor Appl Genet
January 2025
Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands.
The tomato Ty-6 gene conferring resistance against begomoviruses has been cloned and shown to be a variant of DNA polymerase delta subunit 1. Ty-6 is a major resistance gene of tomato that provides resistance against monopartite and bipartite begomoviruses. The locus was previously mapped on chromosome 10, and in this study, we fine-mapped Ty-6 to a region of 47 kb, including four annotated candidate genes.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
Objective: Ovarian cancer significantly impacts women's reproductive health and remains challenging to diagnose and treat. Despite advancements in understanding DNA repair mechanisms and identifying novel therapeutic targets, additional strategies are still needed. Recently, a novel form of cell death called disulfidptosis, which is triggered by glucose deprivation, has been linked to treatment resistance and changes in the tumor microenvironment (TME).
View Article and Find Full Text PDFActa Parasitol
January 2025
Veterinary Laboratories, PAAFR, P.O. Box: 21422, Safat, Kuwait, 13075, Kuwait.
Purpose: The objective of the study was to establish the prevalence of Sarcocystis (Apicomplexa, Sarcocystidae) in brown rats from Jleeb Al-Shuyoukh, Kuwait, and to describe detected parasites using morphological and DNA analysis methods.
Methods: Ninety-eight brown rats (Rattus norvegicus) were examined for Sarcocystis spp. Obtained sarcocysts were investigated using light microscopy and electron microscopy.
Sci Rep
January 2025
Translational Research Laboratory, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai, India.
In this study, we measured human epidermal growth factor receptor (EGFR) mutations in both tissue and circulating tumor DNA (ctDNA) by using beads, emulsions, amplifications and magnetic polymerase chain reaction (BEAMing PCR). Noninvasive mutation detection by assessing circulating tumor DNA (ctDNA) offers many advantages over tumor biopsy. One hundred non-small cell lung cancer (NSCLC) patients were enrolled, and both preoperative plasma samples and formalin-fixed and paraffin-embedded (FFPE) samples were collected for the study.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!