The deg-3(u662) mutation is a degeneration-causing mutation in a Caenorhabditis elegans nicotinic acetylcholine receptor. In a large screen for mutations that suppress the deleterious effects of this mutation we identified 32 mutations in the deg-3 gene. Among these, 11 are missense mutations, affecting seven residues within the extracellular domain or the membrane-spanning domains. All of these mutations greatly reduce the degeneration-causing activity of deg-3(u662). All but one of these mutations cause defective localization of the DEG-3 protein, as seen in immunohistochemical analysis. Thus our screen identifies multiple residues within the nicotinic acetylcholine receptor needed for normal folding, assembly, or trafficking of this receptor. Interestingly, these mutations lead to distinct localization defects suggesting differences in their effect on DEG-3's maturation process. Specifically, mutations in the extracellular domain lead to a phenotype more severe than mutations in the membrane-spanning domains. Differences in the effects of the mutations are also predicted by homology-based modeling, showing that some mutations in the extracellular domain are likely to disrupt the native fold of the protein, while others are likely to disrupt trafficking.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi020193y | DOI Listing |
Eur J Clin Invest
January 2025
Department of Surgical, Medical and Molecular Pathology and Critical Area, Laboratory of Biochemistry, University of Pisa, Pisa, Italy.
Sotatercept binds free activins by mimicking the extracellular domain of the activin receptor type IIA (ACTRIIA). Additional ligands are BMP/TGF-beta, GDF8, GDF11 and BMP10. The binding with activins leads to the inhibition of the signalling pathway and the deactivation of the bone morphogenic protein (BMP) receptor type 2.
View Article and Find Full Text PDFHuman epidermal growth factor receptor 2 (HER2, also known as ERBB2) signaling promotes cell growth and differentiation, and is overexpressed in several tumor types, including breast, gastric and colorectal cancer. HER2-targeted therapies have shown clinical activity against these tumor types, resulting in regulatory approvals. However, the efficacy of HER2 therapies in tumors with HER2 mutations has not been widely investigated.
View Article and Find Full Text PDFJ Muscle Res Cell Motil
January 2025
School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK.
Biallelic mutations in multiple EGF domain protein 10 (MEGF10) gene cause EMARDD (early myopathy, areflexia, respiratory distress and dysphagia) in humans, a severe recessive myopathy, associated with reduced numbers of PAX7 positive satellite cells. To better understand the role of MEGF10 in satellite cells, we overexpressed human MEGF10 in mouse H-2k-tsA58 myoblasts and found that it inhibited fusion. Addition of purified extracellular domains of human MEGF10, with (ECD) or without (EGF) the N-terminal EMI domain to H-2k-tsA58 myoblasts, showed that the ECD was more effective at reducing myoblast adhesion and fusion by day 7 of differentiation, yet promoted adhesion of myoblasts to non-adhesive surfaces, highlighting the importance of the EMI domain in these behaviours.
View Article and Find Full Text PDFDiabetes
January 2025
Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO, USA.
Increasing evidence shows that pathogenic T cells in type 1 diabetes (T1D) that may have evaded negative selection recognize post-translational modified (PTM) epitopes of self-antigens. We have investigated the profiles of autoantibodies specifically targeting the deamidated epitopes of insulinoma antigen-2 extracellular domain (IA-2ec) to explore their relationship with T1D development. We compared the characteristics of autoantibodies targeting the IA-2ec Q>E epitopes (PTM IA-2ecA) as well as those targeting the IA-2ec unmodified epitopes (IA-2ecA) in participants across different stages of T1D development and in individuals with other types of diabetes and other kinds of autoimmunity.
View Article and Find Full Text PDFAdv Exp Med Biol
January 2025
Cancer Research UK Scotland Centre (Edinburgh), Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, UK.
E-cadherin is a transmembrane protein and central component of adherens junctions (AJs). The extracellular domain of E-cadherin forms homotypic interactions with E-cadherin on adjacent cells, facilitating the formation of cell-cell adhesions, known as AJs, between neighbouring cells. The intracellular domain of E-cadherin interacts with α-, β- and p120-catenins, linking the AJs to the actin cytoskeleton.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!