AI Article Synopsis

Article Abstract

Electrofusion-derived BRIN-BD11 cells are glucose-sensitive insulin-secreting cells which provide an archetypal bioengineered surrogate beta-cell for insulin replacement therapy in diabetes mellitus. 5x10(6) BRIN-BD11 cells were implanted intraperitoneally into severely hyperglycaemic (>24 mmol/l) streptozotocin-induced insulin-treated diabetic athymic nude (nu/nu) mice. The implants reduced hyperglycaemia such that insulin injections were discontinued by 5-16 days (<17 mmol/l) and normoglycaemia (<9 mmol/l) was achieved by 7-20 days. Implanted cells were removed after 28 days and re-established in culture. After re-culture for 20 days, glucose-stimulated (16.7 mmol/l) insulin release was enhanced by 121% (p<0.001) compared to non-implanted cells. Insulin responses to glucagon-like peptide-1 (10(-9) mol/l), cholecystokinin-8 (10(-8) mol/l) and L-alanine (10 mmol/l) were increased by 32%, 31% and 68% respectively (p<0.05-0.01). Insulin content of the cells was 148% greater at 20 days after re-culture than before implantation (p<0.001), but basal insulin release (at 5.6 mmol/l glucose) was not changed. After re-culture for 40 days, insulin content declined to 68% of the content before implantation (p<0.01), although basal insulin release was unchanged. However, the insulin secretory responses to glucose, glucagon-like peptide-1, cholecystokinin-8 and L-alanine were decreased after 40 days of re-culture to 65%, 72%, 73% and 42% respectively of the values before implantation (p<0.05-0.01). The functional enhancement of electrofusion-derived surrogate beta-cells that were re-cultured for 20 days after implantation and restoration of normoglycaemia indicates that the in vivo environment could greatly assist beta-cell engineering approaches to therapy for diabetes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2478526PMC
http://dx.doi.org/10.1155/edr.2001.29DOI Listing

Publication Analysis

Top Keywords

electrofusion-derived brin-bd11
8
insulin-secreting cells
8
brin-bd11 cells
8
functional enhancement
4
enhancement electrofusion-derived
4
brin-bd11 insulin-secreting
4
cells
4
cells implantation
4
implantation diabetic
4
diabetic mice
4

Similar Publications

Knowledge about the sites and actions of the numerous physiological and pharmacological factors affecting insulin secretion and pancreatic beta-cell function has been derived from the use of bioengineered insulin-producing cell lines. Application of an innovative electrofusion approach has generated novel glucose-responsive insulin-secreting cells for pharmaceutical and experimental research, including popular BRIN-BD11 beta-cells. This review gives an overview of the establishment and core characteristics of clonal electrofusion-derived BRIN-BD11 beta-cells.

View Article and Find Full Text PDF

Electrofusion-derived BRIN-BD11 cells are glucose-sensitive insulin-secreting cells which provide an archetypal bioengineered surrogate beta-cell for insulin replacement therapy in diabetes mellitus. 5x10(6) BRIN-BD11 cells were implanted intraperitoneally into severely hyperglycaemic (>24 mmol/l) streptozotocin-induced insulin-treated diabetic athymic nude (nu/nu) mice. The implants reduced hyperglycaemia such that insulin injections were discontinued by 5-16 days (<17 mmol/l) and normoglycaemia (<9 mmol/l) was achieved by 7-20 days.

View Article and Find Full Text PDF

The insulin-secretory responsiveness of four popular and widely used insulin-secreting cells lines (RINm5F, HIT-T15, INS-1 and BRIN-BD11 cells) to a range of stimuli including glucose, amino acids, neurotransmitters, peptide hormones and sulphonylureas was studied. Differences were seen in the pattern of responsiveness of the cell lines to the various modulators of insulin release. While these studies revealed that INS-1 cells had the highest insulin content, only BRIN-BD11 cells exhibited a significant step-wise insulin secretory response to increasing glucose concentrations.

View Article and Find Full Text PDF

The electrofusion-derived rat insulin-secreting cell line BRIN-BD11 was cultured in five different commercially available media to determine the optimum medium for the in vitro maintenance of such clonal cell lines. Cells were cultured in RPMI-1640, DMEM, McCOY'S, F-12K, or MEM culture medium supplemented with 10% (v/v) fetal bovine serum and antibiotics (100 U/ml penicillin and 0.1 g/L streptomycin).

View Article and Find Full Text PDF

Functional effects of prolonged exposure to the sulfonylurea, tolbutamide, were examined in the clonal electrofusion-derived BRIN-BD11 cell line. In acute 20-min incubations, 50-400 microM tolbutamide stimulated a dose-dependent increase (P < 0.01) in insulin release at both non-stimulatory (1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!