An integrative expression vector based on promoter and terminator transcriptional sequences from the Hansenula polymorpha nitrate reductase gene (YNR1) has been developed to express nitrate assimilation plant genes in the nitrate assimilatory yeast H. polymorpha. Using this vector a plant nitrate reductase cDNA (tobacco Nia2) was expressed for the first time in a nitrate assimilatory yeast. The heterologous nitrate reductase produced retained its biochemical and physiological properties such as its NADH-dependent nitrate reductase activity, and allowed growth in nitrate containing media in a strain lacking endogenous nitrate reductase activity. In the transgenic strain, maximum tobacco nitrate reductase activity was about 70% of that presented in the wild-type. On the other hand, the disappearance of nitrate reductase activity correlated with that of the enzyme protein in response to the addition of ammonium to the medium and took place more rapidly in the transgenic strain than in the wild-type. Nitrate reductase activity of the recombinant strain assayed in the presence of Mg2+ was about 30% of that observed when assayed with EDTA. This result, together with a decreased growth rate in nitrate, suggests that tobacco nitrate reductase could be partially inactivated in H. polymorpha by phosphorylation and binding of 14-3-3-like proteins. These results show that H. polymorpha is a useful yeast heterologous expression system for studying plant proteins involved in nitrate assimilation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/a:1019814505677 | DOI Listing |
Plant Physiol Biochem
January 2025
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
Melatonin (Mel) is a tryptophan-derived (N-acetyl-5-methoxytryptamine) molecule. In the present study, role of Mel in the regulation of various anaplerotic enzymes is discussed in relation to N metabolism and H-ATPase activity in mung bean under Cd stress. The application of Mel to the Cd-stressed mung bean seedlings was remarkable in improving the activity of hexokinase (35.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, 38000, Pakistan.
The lactic acid bacterial (LAB) species have proven multifaceted roles in sustainable agriculture due to their biologically safe nature, making them eco-friendly. However, their plant growth-improving mechanisms in stressed and non-stressed conditions are still under consideration. Thus, the current work has been planned to evaluate the drought tolerance potential and plant growth-promoting (PGP) traits of Loigolactobacillus coryniformis BCH-4 in Zea mays L.
View Article and Find Full Text PDFJ Exp Bot
January 2025
Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada.
Alternative oxidase (AOX) regulates the level of reactive oxygen species and nitric oxide (NO) in plants. While under normoxic conditions it alleviates NO formation, there are several indications that in the conditions of low oxygen such as during seed germination before radicle protrusion, in meristematic stem cells, and in flooded roots AOX can be involved in the production of NO from nitrite. Whereas the first reports considered this role as indirect, more evidence is accumulated that AOX can act as a nitrite: NO reductase.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt.
Microbial metabolic enzymes play a crucial role in several biological processes that have a significant impact on growth and proliferation. Therefore, inhibiting specific key metabolic enzymes can be an applicable approach for developing antimicrobial agents that selectively target pathogens. In the current study, selenium nanoparticles (Se NPs) extracellularly biosynthesized by Nocardiopsis sp.
View Article and Find Full Text PDFPlant Sci
January 2025
UMR INRAE 1355, Université Nice Côte d'Azur, Institut Sophia Agrobiotech, 06903 Sophia Antipolis, France. Electronic address:
Flooding induces hypoxia in plant tissues, impacting various physiological and biochemical processes. This study investigates the adaptive response of the roots and nitrogen-fixing nodules of Medicago truncatula in symbiosis with Sinorhizobium meliloti under short-term hypoxia caused by flooding. Four-week-old plants were subjected to flooding for 1 to 4 days.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!