We used differential screening of cDNAs from individual taste receptor cells to identify candidate taste transduction elements in mice. Among the differentially expressed clones, one encoded Trpm5, a member of the mammalian family of transient receptor potential (TRP) channels. We found Trpm5 to be expressed in a restricted manner, with particularly high levels in taste tissue. In taste cells, Trpm5 was coexpressed with taste-signaling molecules such as alpha-gustducin, Ggamma13, phospholipase C-beta2 (PLC-beta2) and inositol 1,4,5-trisphosphate receptor type III (IP3R3). Our heterologous expression studies of Trpm5 indicate that it functions as a cationic channel that is gated when internal calcium stores are depleted. Trpm5 may be responsible for capacitative calcium entry in taste receptor cells that respond to bitter and/or sweet compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nn952 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!