Phosphatidylinositol (PI) metabolism plays a central role in signaling pathways in both animals and higher plants. Stomatal guard cells have been reported to contain PI 3-phosphate (PI3P) and PI 4-phosphate (PI4P), the products of PI 3-kinase (PI3K) and PI 4-kinase (PI4K) activities. In this study, we tested the roles of PI3P and PI4P in stomatal movements. Both wortmannin (WM) and LY294002 inhibited PI3K and PI4K activities in guard cells and promoted stomatal opening induced by white light or the circadian clock. WM and LY294002 also inhibited stomatal closing induced by abscisic acid (ABA). Furthermore, overexpression in guard cells of GFP:EBD (green fluorescent protein:endosome binding domain of human EEA1) or GFP:FAPP1PH (PI-four-P adaptor protein-1 pleckstrin homology domain), which bind to PI3P and PI4P, respectively, increased stomatal apertures under darkness and white light and partially inhibited stomatal closing induced by ABA. The reduction in ABA-induced stomatal closing with reduced levels of PI monophosphate seemed to be attributable, at least in part, to impaired Ca(2+) signaling, because WM and LY294002 inhibited ABA-induced cytosolic Ca(2+) increases in guard cells. These results suggest that PI3P and PI4P play an important role in the modulation of stomatal closing and that reductions in the levels of functional PI3P and PI4P enhance stomatal opening.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC151225PMC
http://dx.doi.org/10.1105/tpc.004143DOI Listing

Publication Analysis

Top Keywords

guard cells
16
pi3p pi4p
16
stomatal closing
16
ly294002 inhibited
12
stomatal
10
stomatal movements
8
pi4k activities
8
stomatal opening
8
white light
8
inhibited stomatal
8

Similar Publications

To identify novel genes engaged in plant epidermal development, we characterized the phenotypic variability of rosette leaf epidermis of 310 sequenced Arabidopsis thaliana accessions, focusing on trichome shape and distribution, compositional characteristics of the trichome cell wall, and histologically detectable metal ion distribution. Some of these traits correlated with cLimate parameters of our accession's locations of origin, suggesting environmental selection. A novel metal deposition pattern in stomatal guard cells was observed in some accessions.

View Article and Find Full Text PDF

Ion homeostasis and coordinated salt tolerance mechanisms in a barley (Hordeum vulgare L.)doubled haploid line.

BMC Plant Biol

January 2025

Shanghai Key Laboratory of Agricultural Genetics and Breeding, Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms of Ministry of Agriculture and Rural Affairs (Shanghai), Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.

Salinization poses a significant challenge in agriculture. Identifying salt-tolerant plant germplasm resources and understanding their mechanisms of salt tolerance are crucial for breeding new salt-tolerant plant varieties. However, one of the primary obstacles to achieving this goal in crops is the physiological complexity of the salt-tolerance trait.

View Article and Find Full Text PDF

Introduction: Hand rejuvenation addresses aging-related changes such as subcutaneous fat loss, skin degradation, and photodamage. Autologous fat transfer (AFT) has emerged as a promising treatment, offering durable volume augmentation and regenerative effects. This study aims to systematically review the evidence on the techniques, outcomes, and complications of AFT for hand rejuvenation.

View Article and Find Full Text PDF

PME12-mutated plants displayed altered stomatal characteristics and susceptibility to ABA-induced closure. Despite changes in PME activity, the mutant exhibited enhanced thermotolerance. These findings suggest a complex interplay between pectin methylesterification, ABA response, and stomatal function, contributing to plant adaptation to heat stress.

View Article and Find Full Text PDF

Combined μ-XRF and XANES Track the Behavior of Pb from PM Entering Chinese Cabbage Leaves.

Environ Sci Technol

January 2025

State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, 2596 Lekai South Street, Baoding 071000, Hebei, China.

Atmospheric fine particulate matter (PM) is the main contributor to Pb accumulation in edible Chinese cabbage leaves in North China. PM-Pb primarily enters leaves via stomatal foliar uptake. However, how PM-Pb is transported and stored within the leaf cells of Chinese cabbage remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!