Addition of arachidonic acid (AA) and docosahexaenoic acid (DHA) to infant formula promotes visual and neural development. This study was designed to determine whether the source of dietary long-chain polyunsaturated fatty acids (LCPUFA) affected overall animal health and safety. Piglets consumed ad libitum from 1 to 16 d of age a skim milk-based formula with different fat sources added to provide 50% of the metabolizable energy. Treatment groups were as follows: control (CNTL; no added LCPUFA), egg phospholipid (PL), algal/fungal triglyceride (TG) oils, TG plus PL (soy lecithin source) added to match phospholipid treatment (TG + PL) and essential fatty acid deficient (EFAD). Formulas with LCPUFA provided 0.6 and 0.3 g/100 g total fatty acids as AA and DHA, respectively. CNTL piglets had 40% longer ileal villi than PL piglets (P < 0.03), but the TG group was not different from the CNTL group. Gross liver histology did not differ among any of the formula-fed groups (P > 0.1). Apparent dry matter digestibility was 10% greater in CNTL, TG and TG + PL groups compared with PL piglets (P < 0.002). No differences in alanine aminotransferase were detected among treatments, but aspartate aminotransferase was elevated (P < 0.03) in PL piglets compared with TG + PL piglets. Total plasma AA concentration was greater in the TG group compared with CNTL piglets (P < 0.05). Total plasma DHA concentrations were greater in TG piglets compared with PL (P < 0.06) or CNTL (P < 0.02) piglets. These data demonstrate that the algal/fungal TG sources of DHA and AA may be a more appropriate supplement for infant formulas than the egg PL source based on piglet plasma fatty acid profiles and apparent dry matter digestibilities.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jn/131.10.3081DOI Listing

Publication Analysis

Top Keywords

fatty acids
12
piglets
10
dietary long-chain
8
long-chain polyunsaturated
8
polyunsaturated fatty
8
fatty acid
8
cntl piglets
8
apparent dry
8
dry matter
8
compared piglets
8

Similar Publications

Mitochondrial dysfunction and lipid alterations in primary sclerosing cholangitis.

Scand J Gastroenterol

January 2025

Norwegian PSC Research Centre, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway.

Objectives: Indications of mitochondrial dysfunction are commonly seen in liver diseases, but data are scarce in primary sclerosing cholangitis (PSC). Analyzing circulating and liver-resident molecules indirectly reflecting mitochondrial dysfunction, we aimed to comprehensively characterize this deficit in PSC, and whether this was PSC specific or associated with cholestasis.

Materials And Methods: We retrospectively included plasma from 191 non-transplant patients with large-duct PSC and 100 healthy controls and explanted liver tissue extracts from 24 PSC patients and 18 non-cholestatic liver disease controls.

View Article and Find Full Text PDF

Exposure to saturated fatty acids (SFAs), such as palmitic acid, can lead to cellular metabolic dysfunction known as lipotoxicity. Although canonical adaptive metabolic processes like lipid storage or desaturation are known cellular responses to saturated fat exposure, the link between SFA metabolism and organellar biology remains an area of active inquiry. We performed a genome-wide CRISPR knockout screen in human epithelial cells to identify modulators of SFA toxicity.

View Article and Find Full Text PDF

Cystine/cysteine is critical for antioxidant response and sulfur metabolism in cancer cells and is one of the most depleted amino acids in the PDAC microenvironment. The effects of cystine limitation stress (CLS) on PDAC progression are poorly understood. Here we report that adaptation to CLS (CLSA) promotes PDAC cell proliferation and tumor growth through translational upregulation of the oxidative pentose phosphate pathway (OxPPP).

View Article and Find Full Text PDF

Excess lipid droplet (LD) accumulation is associated with several pathological states, including Alzheimer's disease (AD). However, the mechanism(s) by which changes in LD composition and dynamics contribute to pathophysiology of these disorders remains unclear. Apolipoprotein E (ApoE) is a droplet associated protein with a common risk variant (E4) that confers the largest increase in genetic risk for late-onset AD.

View Article and Find Full Text PDF

Oligodendrocytes are the myelinating cells of the central nervous system. Regulation of the early stages of oligodendrocyte development is critical to the function of the cell. Specifically, myelin sheath formation is an energetically demanding event that requires precision, as alterations may lead to dysmyelination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!