Identification of a polymorphic, neuron-specific chromatin remodeling complex.

Genes Dev

Department of Developmental Biology, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA.

Published: October 2002

A variety of chromatin remodeling complexes are thought to assist sequence-specific transcription factors. The complexes described to date are expressed ubiquitously, suggesting that they have general transcriptional functions. We show that vertebrate neurons have a specialized chromatin remodeling complex, bBAF, specifically containing the actin-related protein, BAF53b, which is first expressed in postmitotic neurons at about murine embryonic day 12.5 (E12.5). BAF53b is combinatorially assembled into polymorphic complexes with ubiquitous subunits including the two ATPases BRG1 and BRM. We speculate that bBAF complexes create neuronal-specific patterns of chromatin accessibility, thereby imparting new regulatory characteristics to ubiquitous sequence-specific transcription factors in neurons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC187451PMC
http://dx.doi.org/10.1101/gad.992102DOI Listing

Publication Analysis

Top Keywords

chromatin remodeling
12
remodeling complex
8
sequence-specific transcription
8
transcription factors
8
identification polymorphic
4
polymorphic neuron-specific
4
chromatin
4
neuron-specific chromatin
4
complex variety
4
variety chromatin
4

Similar Publications

Non-Canonical TERT Activity Initiates Osteogenesis in Calcific Aortic Valve Disease.

Circ Res

January 2025

Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, PA. (R.A.C., C.C.C., R.W., A.C., C.B., C.R., W.J.M., M.J. Bashline, A.P., A.M.P., P.B., M.J. Brown, C.S.H.).

Background: Calcific aortic valve disease is the pathological remodeling of valve leaflets. The initial steps in valve leaflet osteogenic reprogramming are not fully understood. As TERT (telomerase reverse transcriptase) overexpression primes mesenchymal stem cells to differentiate into osteoblasts, we investigated whether TERT contributes to the osteogenic reprogramming of valve interstitial cells.

View Article and Find Full Text PDF

Glioblastoma is the most frequent and malignant primary brain tumor. Although the survival is generally dismal for glioblastoma patients, risk stratification and the identification of high-risk subgroups is important for prompt and aggressive management. The G1-G7 molecular subgroup classification based on the MAPK pathway activation has offered for the first time a non-redundant, all-inclusive classification of adult glioblastoma.

View Article and Find Full Text PDF

The generation of induced pluripotent stem cells (iPSCs) from differentiated somatic cells by Yamanaka factors, including pioneer transcription factors (TFs), has greatly reshaped our traditional understanding of cell plasticity and demonstrated the remarkable potential of pioneer TFs. In addition to iPSC reprogramming, pioneer TFs are pivotal in direct reprogramming or transdifferentiation where somatic cells are converted into different cell types without passing through a pluripotent state. Pioneer TFs initiate a reprogramming process through chromatin opening, thereby establishing competence for new gene regulatory programs.

View Article and Find Full Text PDF

Echinoderms exhibit a wide range of reproductive strategies as adaptations to variable environments. The processes of gonadal development, germ cell differentiation, and spermatogenesis in echinoderms are crucial physiological processes that warrant further in-depth exploration. This review systematically summarizes research from early basic sciences to recent studies on male gonadal development and spermatogenesis, encompassing morphology, histology, physiology, cell biology, developmental biology, and evolutionary biology.

View Article and Find Full Text PDF

Ozone (O) is a ubiquitous pollutant known to produce acute, transient inflammation through oxidative injury and inflammation. These effects are exacerbated in susceptible populations, such as the elderly and those exhibiting genetic mutations in central nodes of pulmonary function. To comprehend the impact of these predisposing factors, the present study examines structural, mechanical, and immunological responses to single acute O exposure (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!