Individual differences in lung cancer susceptibility should be considered for effective lung cancer prevention. We investigated the CYP2E1, ADH3, and GSTP1 genetic polymorphisms that biotransform xenobiotic carcinogens, and variations of their enzyme activity in Caucasian lung tissues (N=28), and found a variant distribution in pulmonary ADH and CYP2E1 activity. The ADH3*1/*1 subjects (N=8) showed significantly higher ADH activity than ADH3*2/*2 (N=3) subjects (P<0.01). On the other hand, we found a 5-fold variation in the pulmonary CYP2E1 activity using a sensitive HLPC/EC based technique. A subject with the CYP2E1-c/t allele showed 2-fold higher CYP2E1 activity than subjects with the c/c allele (N=14). GSTP1 expression comprised 83% of the total pulmonary GSTs. However, neither the GSTP1 polymorphism, nor other lifestyle factors, such as age, gender, smoking status, were found to be associated with pulmonary GST expression. In conclusion, subjects with the ADH3*1 allele showed higher ADH activity and acetaldehyde-DNA adducts in lung than other subjects; thus, the ADH3*1 allele could be considered a risk factor for lung cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0169-5002(02)00150-2 | DOI Listing |
Vavilovskii Zhurnal Genet Selektsii
November 2024
Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia.
Myocardial infarction (MI) is a multifactorial polygenic disease that develops as a result of a complex interaction of numerous genetic factors and the external environment. Accordingly, the contribution of each of them separately is usually not large and may significantly depend on the state of other accompanying factors. The purpose of the study was to search for informative predictors of MI risk based on polygenic analysis of polymorphic variants of (1) the antioxidant defense enzyme genes PON1 (rs662), PON2 (rs7493), CAT (rs1001179), MSRA (rs10098474) and GSTP1 (rs1695); (2) the apoptosis genes CASP8 (rs3834129), TP53 (rs1042522) and BCL2 (rs12454712); and (3) the inflammation genes CRP (rs1205), CX3CR1 (rs3732378), IL6 (rs1800795) and CCL2 (rs1024611).
View Article and Find Full Text PDFGene
December 2024
State University of Londrina (UEL), Department of General Biology, Center of Biological Sciences, Londrina, PR 86057-970, Brazil. Electronic address:
Background: Alteration in DNA repair and metabolism genes can affect the maintenance of DNA integrity or xenobiotics metabolism, potentially leading to DNA damage accumulation. The present study investigated the association between polymorphisms in Glutathione S-Transferase Pi 1 (GSTP1, rs1695) and O-6-Methylguanine-DNA Methyltransferase (MGMT, rs2308321) genes with urothelial bladder cancer (UBC) susceptibility and prognosis. Furthermore, the methylation patterns of the promoter region of these genes were analyzed in tumor and non-tumor bladder tissues, besides MGMT gene expression in tumor samples.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Unité Organisation Nucléaire et Oncogenèse, INSERM U993, Institut Pasteur, Université Paris Cité, 75015 Paris, France.
Hepatoblastoma is the most common primary liver malignancy in children, with metabolic reprogramming playing a critical role in its progression due to the liver's intrinsic metabolic functions. Enhanced glycolysis, glutaminolysis, and fatty acid synthesis have been implicated in hepatoblastoma cell proliferation and survival. In this study, we screened for altered overexpression of metabolic enzymes in hepatoblastoma tumors at tissue and single-cell levels, establishing and validating a hepatoblastoma tumor expression metabolic score using machine learning.
View Article and Find Full Text PDFPLoS One
December 2024
School of Mathematics and Statistics, University College Dublin, Dublin, Ireland.
Identifying differentially methylated cytosine-guanine dinucleotide (CpG) sites between benign and tumour samples can assist in understanding disease. However, differential analysis of bounded DNA methylation data often requires data transformation, reducing biological interpretability. To address this, a family of beta mixture models (BMMs) is proposed that (i) objectively infers methylation state thresholds and (ii) identifies differentially methylated CpG sites (DMCs) given untransformed, beta-valued methylation data.
View Article and Find Full Text PDFJ Mol Histol
December 2024
The Comprehensive Cancer Center, Chongqing University Fuling Hospital, No.2 Gaosuntang Road, Fuling District, 408000, Chongqing, P.R. China.
Background: Breast cancer (BC) poses a significant global health challenge, with chemotherapy resistance, especially to docetaxel, remaining a major obstacle in effective treatment. The molecular mechanisms underlying this resistance are critical for developing targeted therapeutic strategies.
Objective: This study aims to explore the role of dual-specificity tyrosine phosphorylation-regulated kinase 2 (DYRK2), a member of the DYRK family, in docetaxel resistance in breast cancer cells and investigate its impact on cellular responses, including drug sensitivity and migration.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!