Background: Exported proteases are commonly associated with virulence in bacterial pathogens, yet there is a paucity of information regarding their role in Mycobacterium tuberculosis. There are five genes (mycP1-5) present within the genome of Mycobacterium tuberculosis H37Rv that encode a family of secreted, subtilisin-like serine proteases (the mycosins). The gene mycP1 (encoding mycosin-1) was found to be situated 3700 bp (four ORF's) from the RD1 deletion region in the genome of the attenuated vaccine strain M. bovis BCG (bacille de Calmette et Guérin) and was selected for further analyses due to the absence of expression in this organism.

Results: Full-length, 50 kDa mycosin-1 was observed in M. tuberculosis cellular lysates, whereas lower-molecular-weight species were detected in culture filtrates. A similar lower-molecular-weight species was also observed during growth in macrophages. Mycosin-1 was localized to the membrane and cell wall fractions in M. tuberculosis by Western blotting, and to the cell envelope by electron microscopy. Furthermore, M. tuberculosis culture filtrates were shown to contain a proteolytic activity inhibited by mixed serine/cysteine protease inhibitors and activated by Ca2+, features typical of the subtilisins.

Conclusions: Mycosin-1 is an extracellular protein that is membrane- and cell wall-associated, and is shed into the culture supernatant. The protein is expressed after infection of macrophages and is subjected to proteolytic processing. Although proteolytically active mycosin-1 could not be generated recombinantly, serine protease activity containing features typical of the subtilisins was detected in M. tuberculosis culture filtrates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC131053PMC
http://dx.doi.org/10.1186/1471-2180-2-30DOI Listing

Publication Analysis

Top Keywords

mycobacterium tuberculosis
12
culture filtrates
12
subtilisin-like serine
8
serine protease
8
cell wall-associated
8
expressed infection
8
infection macrophages
8
lower-molecular-weight species
8
tuberculosis culture
8
features typical
8

Similar Publications

Tongue swabs represent a potential alternative to sputum as a sample type for detecting pulmonary tuberculosis (TB) with molecular diagnostic tests. The methods used to process tongue swabs for testing in the World Health Organization-recommended Xpert MTB/RIF Ultra (Xpert Ultra) assay vary greatly. Here, we aimed to identify the optimal tongue swab processing for Xpert Ultra testing.

View Article and Find Full Text PDF

Unlabelled: (Mtb) exhibits an impressive ability to adapt to rapidly changing environments, despite its genome's apparent stability. Recently, phase variation through indel formation in homopolymeric tracts (HT) has emerged as a potentially important mechanism promoting adaptation in Mtb. This study examines the impact of common phase variants associated with the ESX-1 type VII secretion system, focusing on a highly variable HT upstream of the ESX-1 regulatory factor, .

View Article and Find Full Text PDF

Tuberculosis (TB), a leading infectious disease caused by the pathogen , poses a significant treatment challenge due to its unique characteristics and resistance to existing drugs. The conventional treatment regimens, which are lengthy and involve multiple drugs, often result in poor patient adherence and subsequent drug resistance, particularly with multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains. This highlights the urgent need for novel anti-TB therapies and new drug targets.

View Article and Find Full Text PDF

Background: Subjects with immune-mediated inflammatory diseases (IMID), such as rheumatoid arthritis, with tuberculosis infection (TBI), have a high probability of progressing to tuberculosis disease (TB). We aim to characterize the impact of IMID on the immune response to (Mtb) in patients with TBI and TB disease.

Methods: We enrolled TBI and TB patients with and without IMID.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!