Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cell transplantation and tissue regeneration studies indicate a surprisingly broad developmental potential for lineage-committed hematopoietic stem cells (HSCs). Under these conditions HSCs transition into myocytes, neurons, hepatocytes or other types of nonhematopoietic effector cells. Equally impressive is the progression of committed neuronal stem cells (NSCs) to functional blood elements. Although critical cell-of-origin issues remain unresolved, the possibility of lineage switching is strengthened by a few well-controlled examples of cell-type conversion. At the molecular level, switching probably initiates from environmental signals that induce epigenetic modifications, resulting in changes in chromatin configuration. In turn, these changes affect patterns of gene expression that mediate divergent developmental programs. This review examines recent findings in nuclear reprogramming and cell fusion as potential causative mechanisms for transdifferentiation during normal and malignant hematopoiesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1034/j.1600-065x.2002.18703.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!