Protein design depends on the size of the amino acid alphabet.

Phys Rev E Stat Nonlin Soft Matter Phys

Department of Physics, University of Warwick, Coventry CV4 7AL, England.

Published: September 2002

AI Article Synopsis

  • The study explores how proteins can be designed to maintain stability across multiple different shapes or conformations while being thermodynamically favorable.
  • It demonstrates that the ability of a protein to remember various forms is linked to the diversity of amino acids used, specifically growing with the logarithm of the number of amino acid types.
  • The research also delves into how these conformations can relate to each other, suggesting a fixed limit to how much we can manipulate the protein's energy landscape, influencing factors like how "deep" or "broad" the energy wells are within its structure.

Article Abstract

We consider the design of proteins to be simultaneously thermodynamically stable in multiple independent and correlated conformations. We first show that a protein can be trained to fold to multiple independent conformations and calculate its capacity. The number of configurations that it can remember is proportional to the logarithm of the number of amino acid species A, independent of chain length. Next we investigate the recognition of correlated conformations, which we apply to funnel design around a single configuration. The maximum basin of attraction, as parametrized in our model, also depends on the number of amino acid species as ln A. We argue that the extent to which the protein energy landscape can be manipulated is fixed, effecting a trade off between well breadth, well depth, and well number. This emerging picture motivates a clearer understanding of the scope and limits of protein and heteropolymer function.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.66.031902DOI Listing

Publication Analysis

Top Keywords

amino acid
12
multiple independent
8
correlated conformations
8
number amino
8
acid species
8
protein
4
protein design
4
design depends
4
depends size
4
size amino
4

Similar Publications

Mesoporous Silica with Dual Stimuli-Microenvironment Responsiveness via the Pectin-Gated Strategy for Controlled Release of Rosmarinic Acid.

ACS Appl Bio Mater

January 2025

College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou 310027, China.

Traditional drug-delivery methods are limited by low bioavailability and nonspecific drug distribution, resulting in poor therapeutic efficacy and potential risks of toxicity. Mesoporous silica nanoparticles (MSNs) have attracted wide attention as drug-delivery carriers due to their large specific surface area, adjustable pore size, good mechanical strength, good biocompatibility, and rich hydroxyl groups on their surface. In this paper, MSNs were synthesized by a template method, and the morphology and pore structure were regulated.

View Article and Find Full Text PDF

Bacterial cytokinesis begins with polymerization of the tubulin homologue FtsZ into a ring-like structure at midcell, the Z-ring, which recruits the late cell division proteins that synthesize the division septum. Assembly of FtsZ is carefully regulated and supported by a dozen conserved cell division proteins. Generally, these proteins are not essential, but removing more than one is in many cases lethal.

View Article and Find Full Text PDF

The Japanese encephalitis virus NS1' protein facilitates virus infection in mosquitoes.

PLoS Negl Trop Dis

January 2025

Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.

Background: The Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, is known for its capacity to cause severe neurological disease in Asia. Neurotropic flaviviruses within the Japanese encephalitis (JE) serogroup possess the distinctive feature of expressing a unique nonstructural protein, NS1'. The NS1' protein consists of the full NS1 protein with an additional 52 amino acid extension at the C-terminus and has been demonstrated to exhibit virulence in mammalian hosts upon infection.

View Article and Find Full Text PDF

Site-selective photo-crosslinking for the characterisation of transient ubiquitin-like protein-protein interactions.

PLoS One

January 2025

Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.

Non-covalent protein-protein interactions are one of the most fundamental building blocks in cellular signalling pathways. Despite this, they have been historically hard to identify using conventional methods due to their often weak and transient nature. Using genetic code expansion and incorporation of commercially available unnatural amino acids, we have developed a highly accessible method whereby interactions between biotinylated ubiquitin-like protein (UBL) probes and their binding partners can be stabilised using ultraviolet (UV) light-induced crosslinks.

View Article and Find Full Text PDF

Prostate cancer is the second most common type of cancer in male worldwide. Stromal-epithelial interaction is thought to have a major impact on cancer development and progression. Previous studies have shown that interaction via soluble factors lead to a reduction in the expression of xCT and AL122023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!