Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the density functional theory formulation of molecular solvents, the solvation free energy of a solute can be obtained directly by minimization of a functional, instead of the thermodynamic integration scheme necessary when using atomistic simulations. In the homogeneous reference fluid approximation, the expression of the free-energy functional relies on the direct correlation function of the pure solvent. To obtain that function as exactly as possible for a given atomistic solvent model, we propose the following approach: first to perform molecular simulations of the homogeneous solvent and compute the position and angle-dependent two-body distribution functions, and then to invert the Ornstein-Zernike relation using a finite rotational invariant basis set to get the corresponding direct correlation function. This rather natural scheme is proved, for the first time to our knowledge, to be valuable for a dipolar solvent involving long range interactions. The resulting solvent free-energy functional can then be minimized on a three-dimensional grid around a solute to get the solvent particle and polarization density profiles and solvation free energies. The viability of this approach is proven in a comparison with "exact" molecular dynamics calculations for the simple test case of spherical ions in a dipolar solvent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.66.031206 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!