Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, we investigated the effects of various nitrogen oxide (NO(x)) species on the extent of prostaglandin H(2) synthase-1 (PGHS-1) nitration in purified protein and in vascular smooth muscle cells. We also examined PGHS-1 activity under these conditions and found the degree of nitration to correlate inversely with enzyme activity. In addition, since NO(x) species are thought to invoke damage during the pathogenesis of atherosclerosis, we examined human atheromatous tissue for PGHS-1 nitration. Both peroxynitrite and tetranitromethane induced Tyr nitration of purified PGHS-1, whereas 1-hydroxy-2-oxo-3-(N-methyl-aminopropyl)-3-methyl-1-triazene (NOC-7; a nitric oxide-releasing compound) did not. Smooth muscle cells treated with peroxynitrite showed PGHS-1 nitration. The extent of nitration by specific NO(x) species was determined by electrospray ionization mass spectrometry. Tetranitromethane was more effective than peroxynitrite, NOC-7, and nitrogen dioxide at nitrating a tyrosine-containing peptide (12%, 5%, 1%, and <1% nitration, respectively). Nitrogen dioxide and, to a lesser extent, peroxynitrite, induced dityrosine formation. Using UV/Vis spectroscopy, it was estimated that the reaction of PGHS-1 with excess peroxynitrite yielded two nitrated tyrosines/PGHS-1 subunit. Finally, atherosclerotic tissue obtained from endarterectomy patients was shown to contain nitrated PGHS-1. Thus, prolonged exposure to elevated levels of peroxynitrite may cause oxidative damage through tyrosine nitration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1194/jlr.m200199-jlr200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!