Mucin type O-glycosylation begins with the transfer of GalNAc to serine and threonine residues on proteins by a family of UDP-GalNAc:polypeptide N-acetylgalactosaminlytransferases. These enzymes all contain a lectin-like (QXW)(3) repeat sequence at the C terminus that consists of three tandem repeats (alpha, beta, and gamma). The putative lectin domain of one of the most ubiquitous isozymes, GalNAc-T1, is reportedly not functional. In this report, we have reevaluated the role of the GalNAc-T1 lectin domain. Deletion of the lectin domain resulted in a complete loss of enzymatic activity. We also found that GalNAc-T1 has two activities distinguished by their sensitivities to inhibition with free GalNAc; one activity is sensitive, and the other is resistant. In our experiments, the former activity is represented by the O-glycosylation of apomucin, an acceptor that contains multiple glycosylation sites, and the latter is represented by synthetic peptides that contain a single glycosylation site. Site-directed mutagenesis of the lectin domain selectively reduced the former activity and identified Asp(444) in the alpha repeat as the most important site for GalNAc recognition. A further reduction of the GalNAc-inhibitable activity was observed when both Asp(444) and the corresponding aspartate residues in the beta and the gamma repeats were mutated. This suggests a cooperative involvement of each repeat unit in the glycosylation of polypeptides with multiple acceptor sites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M207369200 | DOI Listing |
Cells
December 2024
Division of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany.
Membrane proteins, especially extracellular domains, are key therapeutic targets due to their role in cell communication and associations. Yet, their functions and interactions often remain unclear. This study presents a general method to discover interactions of membrane proteins with immune cells and subsequently to deorphanize their respective receptors.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Anesthesiology and Pain Medicine, Chonnam National University Hospital, Gwangju, South Korea.
Introduction: Macrophage-inducible C-type lectin (Mincle) has emerged as a potential contributor to neuropathic pain induction and neuroinflammatory responses within the spinal cord. Moreover, evidence suggests a close association between toll-like receptor (TLR) and Mincle expression in myeloid cells. This study evaluated the effectiveness of Mincle antibodies in neuropathic pain and identified the epitope of these antibodies.
View Article and Find Full Text PDFInfect Immun
December 2024
Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, the Thoracic Diseases Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
pneumonia (PJP) remains a significant cause of morbidity and mortality during AIDS. In AIDS, the absence of CD4 immunity results in exuberant and often fatal PJP. In addition, organism clearance requires a balanced macrophage response since excessive inflammation promotes lung injury and respiratory failure.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123 Saarbrücken, Germany; Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig; Department of Chemistry, PharmaScienceHub (PSH), Saarland University, D-66123 Saarbrücken, Germany.
Bacteria frequently employ carbohydrate-binding proteins, so-called lectins, to colonize and persist in a host. Thus, bacterial lectins are attractive targets for the development of new antiinfectives. To find new potential targets for antiinfectives against pathogenic bacteria, we searched for homologs of Pseudomonas aeruginosa lectins and identified homologs of LecA in Enterobacter species.
View Article and Find Full Text PDFFront Immunol
January 2025
Department Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates.
Surfactant protein D (SP-D) is a C-type lectin that was originally discovered as a lung surfactant associated phospholipid recognising protein. It was originally shown to be of great importance in surfactant turnover and homeostasis in conjunction with another hydrophilic surfactant protein i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!