Amyloid-beta protein (A beta) deposition in the cerebral vascular walls is one of the key features of Alzheimer's disease and hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D). A beta(1-40) carrying the 'Dutch' mutation (HCHWA-D A beta(1-40)) induces pronounced degeneration of cultured human brain pericytes. In this study, we aimed to identify inhibitors of A beta-induced toxicity in human brain pericytes. The toxic effect of HCHWA-D A beta(1-40) on human brain pericytes was inhibited by co-incubation with catalase, but not with superoxide dismutase, glutathione or vitamin E analogue Trolox. Catalase interacts with A beta, both in cell cultures and in cell-free assays, and has a prominent effect on the amount and conformational state of A beta binding to the cell surface of human brain pericytes. This activity of catalase is likely based on its ability to bind and slowly degrade A beta and not by its usual capacity to convert hydrogen peroxide. Our data confirm that assembly of A beta at the cell surface of human brain pericytes is a crucial step in A beta-induced cellular degeneration of human brain pericytes. Inhibition of fibril formation at the cell surface could be an important factor in therapy aimed at reducing cerebral amyloid angiopathy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0006-8993(02)03218-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!