The effect of three UV-sensitive mutations of Neurospora crassa, upr-I, uvs-4 and uvs-6, on the ultraviolet-inactivation of conidia from two-component heterokaryons was investigated. In two-component heterokaryons with wild-type sensitivity to radiation inactivation, all three conidial fractions exhibited similar ultraviolet-inactivation curves. Each UV-sensitive mutation studied uniquely modified the ultraviolet-inactivation curves of conidia from two-component heterokaryons. In heterokaryons heterokaryotic for upr-I, the upr-I mutation was recessive and the repair function determined by the wild type allele was functional to some degree in homokaryotic upr-I conidia. All three conidial fractions of heterokaryons containing upr-I in both components showed increased sensitivity to ultraviolet light. The uvs-4 mutation was recessive and resulted in conidia with increased UV-sensitivity only when included in both components of a heterokaryon. Homokaryotic uvs-4 conidia, which arose from heterokaryons containing both uvs-4 and wild-type components, exhibited wild-type survival. Therefore, as with upr-I, there was a carryover the repair capability to conidia which were genetically UV-sensitive. The uvs-6 mutation, when included in one component of a two-component heterokaryon, resulted in increased UV-sensitivity of both heterokaryotic and homokaryotic uvs-6 conidia. When both components contained uvs-6, the UV-sensitivity of all three conidial fractions was increased and all showed similar inactivation curves. Thus, as with upr-I and uvs-4, there was a carryover of the wild-type repair capability to genetically uvs-6 conidia. Heterokaryon tests for complementation between two non-allelic UV-sensitive mutations showed that in heterokaryotic conidia, complete complementation occurred between upr-I and uvs-4.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0027-5107(75)90272-9 | DOI Listing |
Adv Biomed Res
November 2023
Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
Background: Recessive disruptive mutations in nucleotide excision repair genes are responsible for a wide range of cutaneous photosensitivity and, in some cases, are associated with multi-system involvement. The heterogeneous nature of these conditions makes next-generation sequencing the method of choice to detect disease-causing variants.
Materials And Methods: A patient from a large multiplex inbred Iranian kindred with several individuals suffering from skin sun-sensitive manifestations underwent complete clinical and molecular evaluations.
PLoS One
October 2023
Faculty of Life and Environmental Sciences, Department of Life Sciences, Shimane University, Matsue, Shimane, Japan.
The homothallic fission yeast Schizosaccharomyces pombe undergoes sexual differentiation when starved, but sam (skips the requirement of starvation for mating) mutants such as those carrying mutations in adenylate cyclase (cyr1) or protein kinase A (pka1) mate without starvation. Here, we identified sam3, a dominant negative allele of rad24, encoding one of two 14-3-3 proteins. Genetic mapping and whole-genome sequencing showed that the sam3 mutation comprises a change in nucleotide at position 959 from guanine to adenine, which switches the amino acid at position 185 from glutamic acid to lysine (E185K).
View Article and Find Full Text PDFAging Cell
October 2023
Institut Pasteur, Université Paris Cité, Molecular Mechanisms of Pathological and Physiological Ageing Unit, UMR3738 CNRS, Paris, France.
Cockayne syndrome (CS) and UV-sensitive syndrome (UVSS) are rare genetic disorders caused by mutation of the DNA repair and multifunctional CSA or CSB protein, but only CS patients display a progeroid and neurodegenerative phenotype, providing a unique conceptual and experimental paradigm. As DNA methylation (DNAm) remodelling is a major ageing marker, we performed genome-wide analysis of DNAm of fibroblasts from healthy, UVSS and CS individuals. Differential analysis highlighted a CS-specific epigenomic signature (progeroid-related; not present in UVSS) enriched in three categories: developmental transcription factors, ion/neurotransmitter membrane transporters and synaptic neuro-developmental genes.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2023
Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697.
The acquisition of novel sexually dimorphic traits poses an evolutionary puzzle: How do new traits arise and become sex-limited? Recently acquired color vision, sexually dimorphic in animals like primates and butterflies, presents a compelling model for understanding how traits become sex-biased. For example, some butterflies uniquely possess UV (ultraviolet) color vision, which correlates with the expression of two differentially tuned UV-sensitive rhodopsins, UVRh1 and UVRh2. To discover how such traits become sexually dimorphic, we studied , which exhibits female-specific UVRh1 expression.
View Article and Find Full Text PDFInt J Biol Macromol
August 2023
Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, India. Electronic address:
UV-stimulated scaffold protein A (UVSSA) is a key protein in the Transcription-Coupled Nucleotide Excision Repair (TC-NER) pathway. UVSSA, an intrinsically disordered protein, interacts with multiple members of the pathway, tethering them into the complex. Several studies have reported that UVSSA recruits Transcription Factor IIH (TFIIH) via direct interaction, following which CSB is degraded and the lesion recognition TC-NER complex dissociates from the damage site to facilitate the DNA repair.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!