The recombinant whole cell biocatalyst Escherichia coli TOP10 [pQR239], expressing cyclohexanone monooxygenase from Acinetobacter calcoaceticus NCIMB 9871, was used in 1.5- and 55-L fed-batch processes to oxidize bicyclo[3.2.0]hept-2-en-6-one to its corresponding regioisomeric lactones, (-)-(1S,5R)-2-oxabicyclo[3.3.0]oct-6-en-3-one and (-)-(1R,5S)-3-oxabicyclo[3.3.0]oct-6-en-2-one. By employing a bicyclo[3.2.0]hept-2-en-6-one feed rate below that of the theoretical volumetric biocatalyst activity (275 micromol x min(-1) x L(-1)), the reactant concentration in the bioreactor was successfully maintained below the inhibitory concentration of 0.2-0.4 g x L(-1). In this way approximately 3.5 g x L(-1) of the combined regioisomeric lactones was produced with a yield of product on reactant of 85-90%. The key limitation to the process was shown to be product inhibition. This process was scaled up to 55 L, producing over 200 g of combined lactone product. Using a simple downstream process (centrifugation, adsorption to activated charcoal, 5-fold concentration with ethyl acetate elution, and silica gel chromatography), we have shown that the two regioisomeric lactone products could be isolated and purified at this scale.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bp0200954DOI Listing

Publication Analysis

Top Keywords

regioisomeric lactones
8
reactor operation
4
operation scale-up
4
scale-up cell
4
cell baeyer-villiger
4
baeyer-villiger catalyzed
4
catalyzed lactone
4
lactone synthesis
4
synthesis recombinant
4
recombinant cell
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!