Computational fluid dynamics modeling of steady-state momentum and mass transport in a bioreactor for cartilage tissue engineering.

Biotechnol Prog

School of Chemical Engineering and the Parker H Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.

Published: March 2003

Computational fluid dynamics (CFD) models to quantify momentum and mass transport under conditions of tissue growth will aid bioreactor design for development of tissue-engineered cartilage constructs. Fluent CFD models are used to calculate flow fields, shear stresses, and oxygen profiles around nonporous constructs simulating cartilage development in our concentric cylinder bioreactor. The shear stress distribution ranges from 1.5 to 12 dyn/cm(2) across the construct surfaces exposed to fluid flow and varies little with the relative number or placement of constructs in the bioreactor. Approximately 80% of the construct surface exposed to flow experiences shear stresses between 1.5 and 4 dyn/cm(2), validating the assumption that the concentric cylinder bioreactor provides a relatively homogeneous hydrodynamic environment for construct growth. Species mass transport modeling for oxygen demonstrates that fluid-phase oxygen transport to constructs is uniform. Some O(2) depletion near the down stream edge of constructs is noted with minimum pO(2) values near the constructs of 35 mmHg (23% O(2) saturation). These values are above oxygen concentrations in cartilage in vivo, suggesting that bioreactor oxygen concentrations likely do not affect chondrocyte growth. Scale-up studies demonstrate the utility and flexibility of CFD models to design and characterize bioreactors for growth of tissue-engineered cartilage.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bp020087nDOI Listing

Publication Analysis

Top Keywords

mass transport
12
cfd models
12
computational fluid
8
fluid dynamics
8
momentum mass
8
tissue-engineered cartilage
8
shear stresses
8
concentric cylinder
8
cylinder bioreactor
8
oxygen concentrations
8

Similar Publications

Anion exchange membrane fuel cells (AEMFCs) are among the most promising sustainable electrochemical technologies to help solve energy challenges. Compared to proton exchange membrane fuel cells (PEMFCs), AEMFCs offer a broader choice of catalyst materials and a less corrosive operating environment for the bipolar plates and the membrane. This can lead to potentially lower costs and longer operational life than PEMFCs.

View Article and Find Full Text PDF

Omega-3 (ω-3) polyunsaturated fatty acids in fish oil have been shown to prevent diet-induced obesity in lean mice and to promote heat production in adipose tissue. However, the effects of fish oil on obese animals remain unclear. This study investigated the effects of fish oil in obese mice.

View Article and Find Full Text PDF

Coenzyme Q10 (CoQ10) plays a crucial role in facilitating electron transport during oxidative phosphorylation, thus contributing to cellular energy production. Statin treatment causes a decrease in CoQ10 levels in muscle tissue as well as in serum, which may contribute to the musculoskeletal side effects. Therefore, we aimed to assess the effect of newly initiated statin treatment on serum CoQ10 levels after acute ST-elevation myocardial infarction (STEMI) and the correlation of CoQ10 levels with key biomarkers of subclinical or clinically overt myopathy.

View Article and Find Full Text PDF

Exploring the Impact of Pharmaceutical Excipient PEG400 on the Pharmacokinetics of Mycophenolic Acid Through In Vitro and In Vivo Experiments.

Int J Mol Sci

December 2024

State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China.

Mycophenolic acid (MPA) is a commonly used immunosuppressant. In the human body, MPA is metabolized into mycophenolic acid 7-O-glucuronide (MPAG) and mycophenolic acid acyl-glucuronide (AcMPAG) mainly through liver glucuronidation, which involves UDP-glucuronosyltransferase (UGTs) and transfer proteins. Research has indicated that the pharmaceutical excipient PEG400 can impact drug processes in the body, potentially affecting the pharmacokinetics of MPA.

View Article and Find Full Text PDF

Urinary Proteome Characterization of Stroke-Prone Spontaneously Hypertensive Rats.

Int J Mol Sci

December 2024

Department of Biochemistry and Molecular Biology, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing 100875, China.

Hypertension is a multifactorial and complex disease influenced by genetic and environmental factors, and it has become one of the most serious public health challenges. This study aimed to investigate the changes in hypertension based on urinary proteome. The stroke-prone spontaneously hypertensive rats (SHRSPs) model was used to examined urinary proteome changes during the development of hypertension.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!