A large scale radon survey using track etch detectors has been carried out from 1995 to 1998 in Greece in order to estimate the radon concentrations in Greek dwellings and the exposure of the Greek population to radon. The total data set consisted of 1,277 samples. Residential potential alpha energy concentration values ranged between (0.024 +/- 0.009) and (8 +/- 1) WLM per year (P < 0.05) and effective doses between (0.09 +/- 0.04) and (28 +/- 4) mSv (P < 0.05). The mean lifetime risk for the Greek population due to radon was found to be 0.4%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0265-931x(02)00026-7 | DOI Listing |
Appl Radiat Isot
January 2025
School of Applied Mathematics and Informatics, University of Osijek, Trg Ljudevita Gaja 6, Osijek, Croatia.
The national radon surveys in Montenegro revealed that the highest annual average radon concentrations (C) in ground floors of dwellings and schools were found in a rural region characterized as a typical high-karst area. In this region, spanning approximately 800 km, C values in 9 houses and 16 schools ranged from 219 to 2494 Bq/m, with AM = 977 Bq/m. To investigate the causes of these elevated indoor radon concentrations, the following parameters were measured near the 25 surveyed buildings: soil humidity, electrical conductivity, pH, activity concentrations of Ra, U, U, Th and K, radon concentration in soil gas (c), soil permeability for radon gas (k), and gamma dose rate in the air.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02114.
Radon, a common radioactive indoor air pollutant, is the second leading cause of lung cancer in the United States. Knowledge about its distribution is essential for risk assessment and designing efficient protective regulations. However, the three current radon maps for the United States are unable to provide the up-to-date, high-resolution, and time-varying radon concentrations.
View Article and Find Full Text PDFBiomed Environ Sci
November 2024
Key Laboratory of Radiological Protection and Nuclear Emergency, China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China.
Objective: We aimed to analyze the current indoor radon level and estimate the population risk of radon-induced lung cancer in urban areas of China.
Methods: Using the passive monitoring method, a new survey on indoor radon concentrations was conducted in 2,875 dwellings across 31 provincial capital cities in Chinese mainland from 2018 to 2023. The attributable risk of lung cancer induced by indoor radon exposure was estimated based on the risk assessment model.
J Environ Radioact
January 2025
Federal Office for Radiation Protection (BfS), Berlin, Germany.
Introduction: Data on outdoor radon are generally scarce compared to indoor radon. However, knowledge of the spatial distribution of outdoor radon is necessary to estimate the overall exposure of the population to radon, it supports the prediction of indoor radon and characterizes the natural radon background. Germany has a comprehensive dataset on long-term outdoor radon concentration and the equilibrium factor at national level, which allowed to produce what is probably the only spatially continuous outdoor radon map at national level so far.
View Article and Find Full Text PDFRadiat Prot Dosimetry
November 2024
Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.
This study aimed to determine the annual effective dose resulting from radon and thoron progeny inhalation. The levels of radon, thoron, and progeny were assessed in residences situated in the Doi Lo region of Chiang Mai, Thailand. Indoor radon and thoron concentrations were detected using passive discriminative detectors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!