There is a need for a specific, sensitive, robust, and large-scale method for diagnosis of drug resistance genes in natural Plasmodium falciparum infections. Established polymerase chain reaction (PCR)-based methods may be compromised by the multiplicity of P. falciparum genotypes in natural infections. Here we adopt a dot-blot method to detect point mutations at nucleotide 323 (residue 108) in the P. falciparum dihydrofolate reductase (dhfr) gene using allele-specific oligonucleotide probes. Serine (Ser) or threonine (Thr) at this position are associated with sensitivity to pyrimethamine while asparagine (Asn) is associated with resistance. The method combines PCR amplification and hybridization of amplified products with radiolabeled allele-specific probes. This technique is specific and sensitive; it detects parasitemia of less than 100 parasites/microl of blood, and can identify a minority parasite genotype down to 1% in a mixture. Analysis of P. falciparum isolates from Sudan, of known response to pyrimethamine, has demonstrated the sensitivity and specificity of the method and its ability to detect multiple genotypes in single infections. Furthermore, it has confirmed the association between pyrimethamine responses and dhfr alleles. The method has been successfully extended for analysis of other point mutations in dhfr at residues 51 and 59, which are associated with a high level of pyrimethamine resistance.

Download full-text PDF

Source
http://dx.doi.org/10.4269/ajtmh.2002.67.24DOI Listing

Publication Analysis

Top Keywords

plasmodium falciparum
8
falciparum dihydrofolate
8
dihydrofolate reductase
8
reductase dhfr
8
dhfr gene
8
specific sensitive
8
point mutations
8
falciparum
5
method
5
detection mutations
4

Similar Publications

Expanding the Chemical Space of Reverse Fosmidomycin Analogs.

ACS Med Chem Lett

January 2025

Institute of Pharmaceutical and Medicinal Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.

Multidrug-resistant pathogens pose a major threat to human health, necessitating the identification of new drug targets and lead compounds that are not susceptible to cross-resistance. This study demonstrates that novel reverse thia analogs of the phosphonohydroxamic acid antibiotic fosmidomycin inhibit 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR), an essential enzyme for , , and that is absent in humans. Some novel analogs with large α-phenyl substituents exhibited strong inhibition across these three DXR orthologues, surpassing the inhibitory activity of fosmidomycin.

View Article and Find Full Text PDF

Background: The increased occurrence of malaria among Africa's displaced communities poses a new humanitarian problem. Understanding malaria epidemiology among the displaced population in African refugee camps is a vital step for implementing effective malaria control and elimination measures. As a result, this study aimed to generate comprehensive and conclusive data from diverse investigations undertaken in Africa.

View Article and Find Full Text PDF

Selection of combination adjuvants for enhanced immunogenicity of a recombinant CelTOS vaccine against Plasmodium falciparum.

Biochem Biophys Res Commun

January 2025

Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran. Electronic address:

Recently, there has been significant interest in developing combination adjuvants to achieve efficient vaccines. However, it remains uncertain which combinations of adjuvants could best enhance the immune response to the recombinant antigen. In the current study, to improve the immunogenicity of Plasmodium falciparum cell traversal protein for ookinetes and sporozoites (PfCelTOS), we tested three different adjuvants: MPL, Poly I:C, and QS-21 alone or in a triple mixture (MPL/Poly I:C/QS-21; MPQ) and a dual mixture (Poly I:C/QS-21; PQ).

View Article and Find Full Text PDF

A sustained blood-stage infection of the human malaria parasite P. falciparum relies on the active exit of merozoites from their host erythrocytes. During this process, named egress, the infected red blood cell undergoes sequential morphological events: the rounding-up of the surrounding parasitophorous vacuole, the disruption of the vacuole membrane and finally the rupture of the red blood cell membrane.

View Article and Find Full Text PDF

Half the world's population is at risk of developing a malaria infection, which is caused by parasites of the genus . Currently, resistance has been identified to all clinically available antimalarials, highlighting an urgent need to develop novel compounds and better understand common mechanisms of resistance. We previously identified a novel tetrahydro-β-carboline compound, PRC1590, which potently kills the malaria parasite.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!