We tested whether proteome reference maps established for one species can be used for cross-species protein identification by comparing two-dimensional protein gel patterns and protein identification data of two closely related bacterial strains and four plant species. First, proteome profiles of two strains of the fully sequenced bacterium Sinorhizobium meliloti were compared as an example of close relatedness, high reproducibility and sequence availability. Secondly, the proteome profiles of three legumes (Medicago truncatula, Melilotus alba and Trifolium subterraneum), and the nonlegume rice (Oryza sativa) were analysed to test cross-species similarities. In general, we found stronger similarities in gel patterns of the arrayed proteins between the two bacterial strains and between the plant species than could be expected from the sequence similarities. However, protein identity could not be concluded from their gel position, not even when comparing strains of the same species. Surprisingly, in the bacterial strains peptide mass fingerprinting was more reliable for species-specific protein identification than N-terminal sequencing. While peptide masses were found to be unreliable for cross-species protein identification, we present useful criteria to determine confident matching against species-specific expressed sequence tag databases. In conclusion, we present evidence that cautions the use of proteome reference maps and peptide mass fingerprinting for cross-species protein identification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/1615-9861(200209)2:9<1288::AID-PROT1288>3.0.CO;2-H | DOI Listing |
BMC Plant Biol
January 2025
National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China.
Background: Salinity stress impairs cotton growth and fiber quality. Protoplasts enable elucidation of early salt-responsive signaling. Elucidating crop tolerance mechanisms that ameliorate these diverse salinity-induced stresses is key for improving agricultural productivity under saline conditions.
View Article and Find Full Text PDFBone Marrow Transplant
January 2025
Division of Pediatric Hematology/Oncology, Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Republic of Korea.
Transplant-associated thrombotic microangiopathy (TA-TMA) is an increasingly recognized complication in hematopoietic cell transplantation (HCT). Given the rarity of prospective pediatric studies on TA-TMA, this study aimed to evaluate the incidence, survival outcomes, and risk factors for predicting early the development of TA-TMA in a pediatric population following allogeneic HCT. We conducted a prospective analysis of 173 pediatric patients to evaluate the incidence, survival outcome, and risk factors of TA-TMA.
View Article and Find Full Text PDFThromb Haemost
January 2025
Department of Bioinformatics, Biocenter, University of Würzburg, Wurzburg, Germany.
Comprehensive characterization of platelets requires various functional assays and analysis techniques, including omics-disciplines, each requiring an individual aliquot of a given sample. Consequently, the sample material per assay is often highly limited rendering downscaling a prerequisite for effective sample exploitation. Here we present a transfer of our recently introduced 96-well-based proteomics workflow (PF96) into the 384-well format (PF384) allowing for a significant increase in sensitivity when processing minute platelet protein amounts.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China; TFX Group-Xi'an Jiaotong University Institute of Life Health, Xi'an 710049, PR China. Electronic address:
Proteomics provides an understanding of biological systems by enabling the detailed study of protein expression profiles, which is crucial for early disease diagnosis. Microfluidic-based proteomics enhances this field by integrating complex proteome analysis into compact and efficient systems. This review focuses on developing microfluidic chip structures for proteomics, covering on-chip sample pretreatment, protein extraction, purification, and identification in recent years.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!