A feeder-independent cloned trophoblast cell line, HTS-1, was established from a mature placenta of Shiba goat (Capra hircus). During the growth phase, single HTS-1 cells exhibited ruffled membranes or lamellipodia often accompanied by elongated cell shape, indicating highly motile nature of the cells. At or near confluence, HTS-1 cells formed monolayers with few sign of cellular overlapping. Binucleate cells were found at a high frequency especially in the peripheral regions of monolayers. In small colonies and the monolayers, majority of HTS-1 cells assumed polygonally shaped cobble-stone like morphology characteristic to epithelial cells, although considerable variations in cellular morphology were observed despite of repeated cloning. Time-lapse video recordings of HTS-1 cells during culture revealed that not only the small colonies but also the monolayers near or at confluence were remarkably motile, often causing extreme elongation of the cells within them. The extremely plastic nature of HTS-1 cells in vitro is likely to be the reflection of the extraordinary capacity of caprine trophoblast cells to be stretched to extreme thinness in vivo as shown by electron microscopy. HTS-1 cells cultured on matrigel are highly invasive, and express MT1-MMP which, in the mouse, has been known to be expressed at the invasive edge of trophoblast both in vitro and in vivo. HTS-1 cells express placental lactogen (PL) and interferon-tau (IFNtau), as confirmed by immunocytochemistry, Western blotting and RT-PCR analysis. Both PL and IFNtau expression in the cells appeared to be down-regulated by cell-cell contact. In the medium conditioned by HTS-1 cells, the presence of secretory form of PL and IFNtau was confirmed by Western blotting. The HTS-1 cell line will serve as a useful in vitro model for the analysis of the molecular and/or cellular mechanisms underlying synepitheliochorial placentation in bovidae animals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1053/plac.2002.0846 | DOI Listing |
BMC Plant Biol
November 2018
School of Agricultural Science, Xichang University, Xichang, 615000, Sichuan, China.
Background: Homologous transformation sterility-1 (HTS-1) is a novel wheat mutant that exhibits pistillody, the transformation of stamens into pistils or pistil-like structures. More extreme phenotypes of this mutation can have six pistils or pistil-like structures without any stamens in a floret. Thus, HTS-1 is highly valuable for studies of wheat hybrid breeding and flower development.
View Article and Find Full Text PDFGenet Mol Res
April 2015
Agrotest Fyto, Ltd., Kroměříž, Czech Republic.
HTS-1 is a new kind of pistillody wheat. All or parts of its stamen are transformed into pistils or pistil-like structures, and it has more seed sets per floret than normal wheat under normal cultivation conditions. To investigate the expression divergence in this mutant, an annealing control primer system was used to identify differentially expressed genes (DEGs) in the young spikelets.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
March 2015
Department of Physiology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas
We recently reported that mean arterial pressure (MAP) is maintained in water-deprived rats by an irregular tonic component of vasomotor sympathetic nerve activity (SNA) that is driven by neuronal activity in the hypothalamic paraventricular nucleus (PVN). To establish whether generation of tonic SNA requires time-dependent (i.e.
View Article and Find Full Text PDFOncogene
January 2008
Department of Biochemistry, University of Leicester, Leicester, UK.
The mammalian target of rapamycin (mTOR) is a large, multidomain protein kinase, which plays a central role in the regulation of cell growth and has recently emerged as an essential target of survival signals in many types of human cancer cells. Here, we report the solution structures of complexes formed between the FKBP12-rapamycin binding (FRB) domain of mTOR and phosphatidic acid, an important cellular activator of the kinase, and between the FRB domain and a novel inhibitor (HTS-1). The overall structure of the FRB domain is very similar to that seen in the ternary complex formed with FKBP12 and the immunosuppressive drug rapamycin; however, there are significant changes within the rapamycin-binding site with important consequences for rational drug design.
View Article and Find Full Text PDFNeuro Endocrinol Lett
December 2006
Department of Medical Biology, Comenius University, Jessenius Faculty of Medicine Martin, Slovakia.
Objectives: Medical workers in oncological units have chronically been exposed to low doses of cytostatics (C) with potential consequences on DNA and chromosomal integrity. Our study addresses relationships between chromosomal aberrations (CAs), chromosome (CSA), and chromatid (CTA) types and polymorphisms in DNA repair genes XRCC1 and XRCC3.
Methods: The study was conducted on 72 exposed individuals from hospitals in Martin (HMT; 28 individuals), Ruzomberok (HRK; 31 medical workers) and in Trstená (HTS; 13 individuals), and on 34 unexposed individuals.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!