Dietary fats and coronary heart disease pathogenesis.

Curr Atheroscler Rep

INSERM, Unit 330, University Bordeaux 2, 146 Rue Léo-Saignat, 33076 Bordeaux cedex, France.

Published: November 2002

AI Article Synopsis

Article Abstract

The intake of saturated fat seems to be the main environmental factor for coronary heart disease (CHD). However, decreasing the intake of saturated fat and replacing it in part with linoleic acid in primary or secondary intervention trials did not satisfactorily reduce CHD clinical manifestations. It is only when omega-3 fatty acids, alpha-linolenic acid (ALA), or eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were added to the diet that sudden cardiac death (ALA, EPA plus DHA) and nonfatal myocardial infarction (only ALA) were significantly lowered. The protective effect of omega-3 fatty acids occurs rapidly, within weeks. The mechanism for preventing ventricular fibrillation seems to be through a direct effect on myocytes. The additional effect of ALA on nonfatal myocardial infarction may be through thrombosis, at least partly caused by an effect on platelets.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11883-002-0045-zDOI Listing

Publication Analysis

Top Keywords

coronary heart
8
heart disease
8
intake saturated
8
saturated fat
8
omega-3 fatty
8
fatty acids
8
nonfatal myocardial
8
myocardial infarction
8
dietary fats
4
fats coronary
4

Similar Publications

The prevalence of aortic stenosis in Māori undergoing clinically indicated echocardiography compared to New Zealand Europeans.

N Z Med J

January 2025

Department of Medicine, HeartOtago, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Department of Cardiology, Dunedin Hospital, Southern District Health Board, Dunedin, New Zealand.

Aim: There are limited data on the prevalence of calcific aortic valve disease (CAVD) in Māori and known inequities in outcomes after aortic valve intervention. Our study aimed to investigate the prevalence of CAVD in Māori.

Methods: Data from initial clinically indicated echocardiograms performed between 2010 to 2018 in patients aged ≥18 years were linked to nationally collected outcome data.

View Article and Find Full Text PDF

Decoding lysosome communication.

Science

January 2025

Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany.

Lysosome interaction with other organelles may be linked to pulmonary hypertension.

View Article and Find Full Text PDF

Lysosomal dysfunction and inflammatory sterol metabolism in pulmonary arterial hypertension.

Science

January 2025

Center for Pulmonary Vascular Biology and Medicine, Pittsburgh, Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.

Vascular inflammation regulates endothelial pathophenotypes, particularly in pulmonary arterial hypertension (PAH). Dysregulated lysosomal activity and cholesterol metabolism activate pathogenic inflammation, but their relevance to PAH is unclear. Nuclear receptor coactivator 7 () deficiency in endothelium produced an oxysterol and bile acid signature through lysosomal dysregulation, promoting endothelial pathophenotypes.

View Article and Find Full Text PDF

Background: The precise pathways connecting insulin resistance (IR) to atherosclerotic cardiovascular disease (ASCVD) remain undefined. The present study aimed to examine the mediating role of arterial stiffness in the association between IR and ASCVD, providing epidemiology insights into the potential mechanisms driving IR to incident ASCVD.

Methods: A total of 59,777 participants from the Kailuan Study Arterial Stiffness Subcohort who were free of ASCVD at baseline were enrolled in the present study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!