Two consecutive [3+2] cycloaddition reactions of the diphosphanylketenimine (PPh(2))(2)C[double bond]C[double bond]NPh (3), involving the phosphanyl groups, with two equivalents of the electron-poor alkynes dimethyl acetylenedicarboxylate or methyl acetylenecarboxylate give rise to the formation of the bicyclic 1 lambda(5),3 lambda(5)-diphospholes 5 a,b, which contain a phosphorane unit with five carbon substituents attached to the phosphorus center. Compound 3 undergoes cyclodimerization by crystallization, affording the unsymmetrical dimer 6, which is converted back to 3 by heating in toluene. Compound 6 can be oxidized stepwise on the three trivalent phosphorus atoms by treatment with H(2)O(2) affording 7, 9, and the transient species 10, which are transformed into their corresponding ketenimine monomers either spontaneously (10) or by heating in toluene (7, 9). In this way, the compound (O[double bond]PPh(2))(PPh(2))C[double bond]C[double bond]NPh (8) is quantitatively obtained. Compound 8 readily reacts with the alkynes MeO(2)CC[triple bond]CCO(2)Me and MeO(2)CC[triple bond]CH, and with phenyl isocyanate and ethyl isothiocyanate through regiospecific [3+2] cycloaddition processes furnishing several lambda(5)-phosphole and lambda(5)-azaphosphole derivatives. Finally, the reaction of 8 with N-methylpropargylamine yields the new 2,3-dihydro-1,4-lambda(5)-azaphosphinine 15 through a cycloaddition process involving two functional groups from each molecule.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/1521-3765(20020902)8:17<3872::AID-CHEM3872>3.0.CO;2-0 | DOI Listing |
Chemphyschem
January 2025
Durgapur Government College, Department of Chemistry, INDIA.
The relative reactivity and cis/trans selectivity of the intramolecular [3+2] cycloaddition (IM32CA) reactions of nitrile oxide (NO), azide (AZ), nitrile sulfide (NS) and nitrile ylide (NY), leading to functionalized heterocycles are studied within the Molecular Electron Density Theory. The kinetically controlled IM32CA reactions are predicted to be cis stereospecific, while the reaction feasibility follows the order NY > NS > NO > AZ with the respective activation Gibbs free energies of 13.7, 17.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Nankai University, College of Chemistry, 94 Weijin Rd., 300071, Tianjin, CHINA.
Reliable methods for rapidly constructing C(sp3)-rich three-dimensional polycycles are in high demand for organic synthesis and medicinal chemistry. Although there are various mature systems for synthesizing five- or six-membered polycycles, a catalytic platform for accessing diverse cycloheptanoid-containing polycyclic scaffolds is lacking. Herein, we describe a method for copper-catalyzed intramolecular 2-aminoallyl cation-diene (4 + 3) cycloaddition reactions.
View Article and Find Full Text PDFJ Org Chem
January 2025
Pharmacy College, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan 250117, China.
Herein, we report a Cu-DTBP-catalyzed [3 + 2] cycloaddition reaction between 1-(2-oxo-2-phenylethyl)--indole-3-aldehyde and arylalkene, using DMF as the solvent. Under relatively mild reaction conditions, a series of indole compounds were synthesized in moderate yields (up to 73%). This protocol features good functional group tolerance and high atom economy.
View Article and Find Full Text PDFJ Mol Model
January 2025
Departamento de Investigación y Desarrollo, ConsultoresAcademicos SpA, Moneda 1137, 8340457, Santiago, Chile.
Context: This study meticulously examines the criteria for assigning electron rearrangements along the intrinsic reaction coordinate (IRC) leading to bond formation and breaking processes during the pyrolytic isomerization of cubane (CUB) to 1,3,5,7-cyclooctatetraene (COT) from both thermochemical and bonding perspectives. Notably, no cusp-type function was detected in the initial thermal conversion step of CUB to bicyclo[4.2.
View Article and Find Full Text PDFChem Sci
December 2024
Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
Phosphorescent gold(iii) complexes possess long-lived emissive excited states, making them ideal for use as molecular sensors and photosensitizers for organic transformations. Literature reports indicate that gold(iii) emitters exhibit good catalytic activity in homogeneous photochemical reactions. Heterogeneous metal-organic framework (MOF)-supported gold(iii) photocatalysts are considered to show high recyclability in photochemical reactions and potentially provide new selectivities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!