A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Circadian control of neurogenesis. | LitMetric

Circadian control of neurogenesis.

J Neurobiol

Department of Biological Sciences, Wellesley College, Wellesley, Massacusetts 02481, USA.

Published: October 2002

The life-long addition of new neurons has been documented in many regions of the vertebrate and invertebrate brain, including the hippocampus of mammals (Altman and Das, 1965; Eriksson et al., 1998; Jacobs et al., 2000), song control nuclei of birds (Alvarez-Buylla et al., 1990), and olfactory pathway of rodents (Lois and Alvarez-Buylla, 1994), insects (Cayre et al., 1996) and crustaceans (Harzsch and Dawirs, 1996; Sandeman et al., 1998; Harzsch et al., 1999; Schmidt, 2001). The possibility of persistent neurogenesis in the neocortex of primates is also being widely discussed (Gould et al., 1999; Kornack and Rakic, 2001). In these systems, an effort is underway to understand the regulatory mechanisms that control the timing and rate of neurogenesis. Hormonal cycles (Rasika et al., 1994; Harrison et al., 2001), serotonin (Gould, 1999; Brezun and Daszuta, 2000; Beltz et al., 2001), physical activity (Van Praag et al., 1999) and living conditions (Kemperman and Gage, 1999; Sandeman and Sandeman, 2000) influence the rate of neuronal proliferation and survival in a variety of organisms, suggesting that mechanisms controlling life-long neurogenesis are conserved across a range of vertebrate and invertebrate species. The present article extends these findings by demonstrating circadian control of neurogenesis. Data show a diurnal rhythm of neurogenesis among the olfactory projection neurons in the crustacean brain, with peak proliferation during the hours surrounding dusk, the most active period for lobsters. These data raise the possibility that light-controlled rhythms are a primary regulator of neuronal proliferation, and that previously-demonstrated hormonal and activity-driven influences over neurogenesis may be secondary events in a complex circadian control pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1002/neu.10095DOI Listing

Publication Analysis

Top Keywords

circadian control
12
control neurogenesis
8
vertebrate invertebrate
8
gould 1999
8
neuronal proliferation
8
neurogenesis
7
0
5
neurogenesis life-long
4
life-long addition
4
addition neurons
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!