Functional characterization of multiple domains involved in the subcellular localization of the hematopoietic Pbx interacting protein (HPIP).

Oncogene

Terry Fox Laboratory, British Columbia Cancer Agency, 601 West 10th Avenue, Vancouver, BC, V5Z 1L3 Canada.

Published: October 2002

We have previously reported the cloning of the Hematopoietic Pbx Interacting Protein (HPIP), a novel protein discovered through its interaction with Pbx1. HPIP is expressed in early hematopoietic precursors, can bind all members of the Pbx family and can inhibit the transcriptional activation of the oncogene E2A-Pbx. To further understand the function of HPIP, we have analysed its cellular localization and characterized its functional localization domains. Using fluorescence microscopy to follow the distribution of different HPIP sequences fused to GFP, we found that HPIP localizes predominantly to cytoskeletal fibers but has the potential ability to shuttle between the nucleus and the cytosol. The cytoskeletal localization of HPIP is mediated by an N-terminal leucine rich region (between aa 190-218) and can be disrupted by the microtubule destabilizing drug vincristine. The HPIP C-terminal domain (aa 443-731) bears a nuclear export activity that is blocked by the CRM1 inhibitor Leptomycin B. In addition, we found two basic amino acid regions located between aa 485-505 and aa 695-720 that contain nuclear import activities attenuated by nuclear export. These observations support a model in which the constitutive attachment of HPIP to the cytoskeleton could be modified by changes in functional domains implicated in nuclear export, import and cytoskeleton binding sequences, allowing the molecule to shuttle between the nucleus and the cytosol.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.onc.1205784DOI Listing

Publication Analysis

Top Keywords

nuclear export
12
hpip
9
hematopoietic pbx
8
pbx interacting
8
interacting protein
8
protein hpip
8
shuttle nucleus
8
nucleus cytosol
8
functional characterization
4
characterization multiple
4

Similar Publications

Palmitate potentiates the SMAD3-PAI-1 pathway by reducing nuclear GDF15 levels.

Cell Mol Life Sci

January 2025

Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.

Nuclear growth differentiation factor 15 (GDF15) reduces the binding of the mothers' against decapentaplegic homolog (SMAD) complex to its DNA-binding elements. However, the stimuli that control this process are unknown. Here, we examined whether saturated fatty acids (FA), particularly palmitate, regulate nuclear GDF15 levels and the activation of the SMAD3 pathway in human skeletal myotubes and mouse skeletal muscle, where most insulin-stimulated glucose use occurs in the whole organism.

View Article and Find Full Text PDF

Probing the functional constraints of influenza A virus NEP by deep mutational scanning.

Cell Rep

January 2025

Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA. Electronic address:

The influenza A virus nuclear export protein (NEP) is a multifunctional protein that is essential for the viral life cycle and has very high sequence conservation. However, since the open reading frame of NEP largely overlaps with that of another influenza viral protein, non-structural protein 1, it is difficult to infer the functional constraints of NEP based on sequence conservation analysis. In addition, the N-terminal of NEP is structurally disordered, which further complicates the understanding of its function.

View Article and Find Full Text PDF

Kinase translocation reporters (KTRs) are powerful tools for single-cell measurement of time-integrated kinase activity but suffer from restricted dynamic range and limited sensitivity, particularly in neurons. To address these limitations, we developed enhanced KTRs (eKTRs) for protein kinase A (PKA) and extracellular signal-regulated kinase (ERK) by (i) increasing KTR size, which reduces the confounding effect of KTR diffusion through the nuclear pore, and (ii) modulating the strength of the bipartite nuclear localization signal (bNLS) in their kinase sensor domains, to ensures that the relative distribution of the KTR between the nucleus and cytoplasmic is determined by active nuclear import, active nuclear export, and relative activity of their cognate kinase. The resultant sets of ePKA-KTRs and eERK-KTRs display high sensitivity, broad dynamic range, and cell type-specific tuning.

View Article and Find Full Text PDF

NUCLEAR RNA-BINDING PROTEINS MEET CYTOPLASMIC VIRUSES.

RNA

January 2025

MRC University of Glasgow Centre for Virus Research, University of Glasgow.

Cytoplasmic viruses interact intricately with the nuclear pore complex and nuclear import/export machineries, affecting nuclear-cytoplasmic trafficking. This can lead to the selective accumulation of nuclear RNA-binding proteins (RBPs) in the cytoplasm. Pioneering research has shown that relocated RBPs serve as an intrinsic defence mechanism against viruses, which involves RNA export, splicing and nucleolar factors.

View Article and Find Full Text PDF

The nuclear pore complex (NPC), a multisubunit complex located within the nuclear envelope, regulates RNA export and the import and export of proteins. Here we address the role of the NPC in driving thermal stress-induced 3D genome repositioning of ( ) genes in yeast. We found that two nuclear basket proteins, Mlp1 and Nup2, although dispensable for NPC integrity, are required for driving genes into coalesced chromatin clusters, consistent with their strong, heat shock-dependent recruitment to gene regulatory and coding regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!