The formation of axon trajectories requires integration of local adhesive interactions with directional information from attractive and repulsive cues. Here, we show that these two types of information are functionally integrated; activation of the transmembrane receptor Roundabout (Robo) by its ligand, the secreted repulsive guidance cue Slit, inactivates N-cadherin-mediated adhesion. Loss of N-cadherin-mediated adhesion is accompanied by tyrosine phosphorylation of beta-catenin and its loss from the N-cadherin complex, concomitant with the formation of a supramolecular complex containing Robo, Abelson (Abl) kinase and N-cadherin. Local formation of such a receptor complex is an ideal mechanism to steer the growth cone while still allowing adhesion and growth in other directions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/ncb858 | DOI Listing |
Elife
January 2025
Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States.
Niches are often found in specific positions in tissues relative to the stem cells they support. Consistency of niche position suggests that placement is important for niche function. However, the complexity of most niches has precluded a thorough understanding of how their proper placement is established.
View Article and Find Full Text PDFBrain Res Bull
December 2024
Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China. Electronic address:
Circular RNAs (circRNAs) are novel class of stable regulatory RNAs abundantly expressed in the brain. However, their role in fear extinction (EXT) memory remains largely unexplored. To investigate the mechanisms of Circular Special AT-rich Sequence Binding Protein 2 (circSatb2) in EXT memory, we constructed a lentivirus overexpressing circSatb2 and injected it into the infralimbic prefrontal cortex (ILPFC) of the mouse brain.
View Article and Find Full Text PDFPhytomedicine
November 2024
School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China; Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China; Tongde Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310007, PR China; School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 310007, PR China. Electronic address:
Brief Bioinform
November 2024
Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou, Zhejiang 310030, China.
Molecular convergence in convergently evolved lineages provides valuable insights into the shared genetic basis of converged phenotypes. However, most methods are limited to coding regions, overlooking the potential contribution of regulatory regions. We focused on the independently evolved vocal learning ability in multiple avian lineages, and developed a whole-genome-alignment-free approach to identify genome-wide Convergently Lost Ancestral Conserved fragments (CLACs) in these lineages, encompassing noncoding regions.
View Article and Find Full Text PDFSci Transl Med
November 2024
Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510, USA.
Roundabout (ROBO) 1 and 2 are transmembrane receptors that bind secreted SLIT ligands through their extracellular domains (ECDs) and signal through their cytoplasmic domains to modulate the cytoskeleton and regulate cell migration, adhesion, and proliferation. SLIT-ROBO signaling regulates pathological ocular neovascularization, which is a major cause of vision loss worldwide, but pharmacological tools to prevent SLIT-ROBO signaling are lacking. Here, we developed human monoclonal antibodies (mAbs) against the ROBO1 and ROBO2 ECDs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!