Chemomechanical coupling of the forward and backward steps of single kinesin molecules.

Nat Cell Biol

Single Molecule Processes Project, ICORP, JST, 2-4-14, Senba-Higashi, Mino, Osaka, 562-0035, Japan.

Published: October 2002

The molecular motor kinesin travels processively along a microtubule in a stepwise manner. Here we have studied the chemomechanical coupling of the hydrolysis of ATP to the mechanical work of kinesin by analysing the individual stepwise movements according to the directionality of the movements. Kinesin molecules move primarily in the forward direction and only occasionally in the backward direction. The hydrolysis of a single ATP molecule is coupled to either the forward or the backward movement. This bidirectional movement is well described by a model of Brownian motion assuming an asymmetric potential of activation energy. Thus, the stepwise movement along the microtubule is most probably due to Brownian motion that is biased towards the forward direction by chemical energy stored in ATP molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncb857DOI Listing

Publication Analysis

Top Keywords

chemomechanical coupling
8
forward backward
8
kinesin molecules
8
forward direction
8
brownian motion
8
forward
4
coupling forward
4
backward steps
4
steps single
4
kinesin
4

Similar Publications

Understanding structure-mechanical activity relationships (SMARs) in polymer mechanochemistry is essential for the rational design of mechanophores with desired properties, yet SMARs in noncovalent mechanical transformations remain relatively underexplored. In this study, we designed a subset of diarylethene mechanophores based on a lever-arm hypothesis and systematically investigated their mechanical activity toward a noncovalent-yet-chemical conversion of atropisomer stereochemistry. Results from Density functional theory (DFT) calculations, single-molecule force spectroscopy (SMFS) measurements, and ultrasonication experiments collectively support the lever-arm hypothesis and confirm the exceptional sensitivity of chemo-mechanical coupling in these atropisomers.

View Article and Find Full Text PDF

Facile Interfacial Reduction Suppresses Redox Chemical Expansion and Promotes the Polaronic to Ionic Transition in Mixed Conducting (Pr,Ce)O Nanoparticles.

ACS Appl Mater Interfaces

January 2025

Department of Materials Science & Engineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, 1304 W. Green Street, Urbana, Illinois 61801, United States.

Mixed ionic/electronic conductors (MIECs) are essential components of solid-state electrochemical devices, such as solid oxide fuel/electrolysis cells. For efficient performance, MIECs are typically nanostructured, to enhance the reaction kinetics. However, the effect of nanostructuring on MIEC chemo-mechanical coupling and transport properties, which also impact cell durability and efficiency, has not yet been well understood.

View Article and Find Full Text PDF

Erbium-doped thin-film lithium niobate (TFLN) lasers have attracted great interest in recent years due to their compatibility with high-speed electro-optic (EO) modulation on the same platform. In this work, high-efficiency single-mode erbium-doped microring lasers with milliwatt output powers were demonstrated. Monolithic lithium niobate microring resonators using pulley-waveguide-coupling were fabricated by the photolithography assisted chemo-mechanical etching (PLACE) technique.

View Article and Find Full Text PDF

The development of sustainable transportation and communication systems requires an increase in both energy density and capacity retention of Li-batteries. Using substrates forming a solid solution with body-centered cubic Li enhances the cycle stability of anode-less batteries. However, it remains unclear how the substrate microstructure affects the lithiation behavior.

View Article and Find Full Text PDF

Constrained mixture models have successfully simulated many cases of growth and remodeling in soft biological tissues. So far, extensions of these models have been proposed to include either intracellular signaling or chemo-mechanical coupling on the organ-scale. However, no version of constrained mixture models currently exists that includes both aspects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!