Salmonella invades mammalian cells by inducing membrane ruffling and macropinocytosis through actin remodelling. Because phosphoinositides are central to actin assembly, we have studied the dynamics of phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P(2)) in HeLa cells during invasion by Salmonella typhimurium. Here we show that the outermost parts of the ruffles induced by invasion show a modest enrichment in PtdIns(4,5)P(2), but that PtdIns(4,5)P(2) is virtually absent from the invaginating regions. Rapid disappearance of PtdIns(4,5)P(2) requires the expression of the Salmonella phosphatase SigD (also known as SopB). Deletion of SigD markedly delays fission of the invaginating membranes, indicating that elimination of PtdIns(4,5)P(2) may be required for rapid formation of Salmonella-containing vacuoles. Heterologous expression of SigD is sufficient to promote the disappearance of PtdIns(4,5)P(2), to reduce the rigidity of the membrane skeleton, and to induce plasmalemmal invagination and fission. Hydrolysis of PtdIns(4,5)P(2) may be a common and essential feature of membrane fission during several internalization processes including invasion, phagocytosis and possibly endocytosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/ncb854 | DOI Listing |
Eur J Cancer
December 2002
Department of Cell Biology and Oncology, Istituto di Ricerche Farmacologiche Mario Negri, Consorzio Mario Negri Sud, Via Nazionale, 66030 Santa Maria Imbaro (Chieti), Italy.
Inositol-containing molecules are involved in important cellular functions, including signalling, membrane transport and secretion. Our interest is in lysophosphatidylinositol and the glycerophosphoinositols, which modulate cell proliferation and G-protein-dependent activities such as adenylyl cyclase and phospholipase A(2). To investigate the role of glycerophosphoinositol (GroPIns) in the modulation of Ras-dependent pathways and its correlation to Ras transformation, we employed a novel liquid chromatography-tandem mass spectrometry technique to directly measure GroPIns in cell extracts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!