We aimed in this study to elucidate the discharge properties and neuronal mechanisms of the dissociation between hypoglossal and phrenic inspiratory activities in decerebrate rats, which had been subjected to neuromuscular blockade and artificially ventilated. The discharge of the hypoglossal nerve and the intracellular activity of hypoglossal motoneurones were monitored during respiration and fictive-swallowing evoked by electrical stimulation of the superior laryngeal nerve, and were compared with the activity of the phrenic nerve. The hypoglossal nerve activity was characterized by its onset preceding the phrenic nerve activity ('pre-I' activity). By manipulating artificial respiration, we could augment the 'pre-I' activity, and could elicit another type of hypoglossal activity decoupled from the phrenic-associated inspiratory bursts ('decoupled' activity). We further scrutinized the correlatives of 'pre-I' and 'decoupled' activities in individual hypoglossal motoneurones. Hypoglossal motoneurones consisted of inspiratory (n = 42), expiratory (n = 18) and non-respiratory (n = 1) neurones and were classified by their swallowing activity into depolarized, hyperpolarized, hyperpolarized-depolarized and unresponsive groups. All of the inspiratory neurones were depolarized in accordance with the 'pre-I' and 'decoupled' activities, and all of the expiratory neurones were hyperpolarized during these activities. Fictive swallowing, which was characterized by its frequent emergence just after the phrenic inspiratory activity, was also evoked just after the 'decoupled' hypoglossal activity, suggesting that this activity may have similar effects on swallowing as the 'overt' inspiratory activity. Such a coupling between 'decoupled' and swallowing activities was also revealed in each motoneurone. These findings suggest that the 'pre-I' and 'decoupled' activities may reflect some internal inspiratory activity of the respiratory centre and that hypoglossal motoneurones may be driven by a distinct group of premotor neurones that possibly play a role in the coordination of respiration and swallowing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2290563 | PMC |
http://dx.doi.org/10.1113/jphysiol.2002.022566 | DOI Listing |
J Neurophysiol
January 2025
Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, Arizona, United States.
Respiration is governed by a central rhythm and pattern generator, which has the pre-Bötzinger complex as the inspiratory oscillator initiating the coordinated activity of several respiratory muscles, including the diaphragm, intercostals, and upper airway muscles. The diaphragm is the main inspiratory pump muscle driving inflow, whereas dilator upper airway muscles, such as tongue muscles, reduce airway resistance during inspiration. Breathing exhibits a marked state-dependent pattern attributed to changes in neuromodulatory tone in respiratory-related brain regions, including decreases in noradrenaline and serotonin and increases in acetylcholine levels during rapid eye movement (REM) sleep.
View Article and Find Full Text PDFFront Physiol
August 2024
Department of Pediatrics, Division of Pulmonary and Sleep Medicine, Duke University Medical Center, Durham, NC, United States.
Front Neurol
September 2024
Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States.
Introduction: Tongue weakness and atrophy can lead to deficits in the vital functions of breathing and swallowing in patients with motor neuron diseases (MNDs; e.g., amyotrophic lateral sclerosis (ALS) and pseudobulbar palsy), often resulting in aspiration pneumonia, respiratory failure, and death.
View Article and Find Full Text PDFFront Neurol
July 2024
School of Biomedical Sciences, St Lucia, QLD, Australia.
In amyotrophic lateral sclerosis (ALS) tissue and the SOD1 mouse model at mid-disease, death of hypoglossal motor neurons (XII MNs) is evident. These XII MNs innervate the intrinsic and extrinsic tongue muscles, and despite their importance in many oral and lingual motor behaviours that are affected by ALS (e.g.
View Article and Find Full Text PDFJ Neurol Sci
August 2024
Department of Neurology, Tokyo Medical University, Tokyo, Japan.
Patients with amyotrophic lateral sclerosis (ALS) do not develop oculomotor disturbances and vesicorectal dysfunction until end-stage disease owing to the survival of certain motor neurons (MNs), including oculomotor neurons and MNs within Onuf's nucleus. In sporadic ALS, adenosine deaminase acting on RNA 2 (ADAR2)-mediated editing of GluA2 mRNA at the Q/R site is compromised in lower MNs. We previously developed genetically modified mice with a conditional knockout of ADAR2 in cholinergic neurons (ADAR2/VAChT-Cre, Fast; AR2).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!