DNA damage, which is left unrepaired by excision repair pathways, often blocks replication, leading to lesions such as breaks and gaps on the sister chromatids. These lesions may be processed by either homologous recombination (HR) repair or translesion DNA synthesis (TLS). Vertebrate Polkappa belongs to the DNA polymerase Y family, as do most TLS polymerases. However, the role for Polkappa in vertebrate cells is unclear because of the lack of reverse genetic studies. Here, we generated cells deficient in Polkappa (polkappa cells) from the chicken B lymphocyte line DT40. Although purified Polkappa is unable to bypass ultraviolet (UV) damage, polkappa cells exhibited increased UV sensitivity, and the phenotype was suppressed by expression of human and chicken Polkappa, suggesting that Polkappa is involved in TLS of UV photoproduct. Defects in both Polkappa and Rad18, which regulates TLS in yeast, in DT40 showed an additive effect on UV sensitivity. Interestingly, the level of sister chromatid exchange, which reflects HR-mediated repair, was elevated in normally cycling polkappa cells. This implies functional redundancy between HR and Polkappa in maintaining chromosomal DNA. In conclusion, vertebrate Polkappa is involved in Rad18-independent TLS of UV damage and plays a role in maintaining genomic stability.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M207957200DOI Listing

Publication Analysis

Top Keywords

polkappa
13
vertebrate polkappa
12
polkappa cells
12
polkappa involved
8
tls
5
cells
5
involvement vertebrate
4
polkappa rad18-independent
4
rad18-independent postreplication
4
repair
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!