Trypanosoma cruzi, the etiological agent of Chagas' disease, may persist for many years in its mammalian host. This suggests escape from the immune response and particularly a suboptimal CD8(+) T cell response, since these cells are involved in infection control. In this report, we show that T. cruzi inhibits the lipopolysaccharide (LPS)-induced up-regulation of MHC class I molecules at the surface of human dendritic cells (DC). To further investigate the functional consequences of this inhibition, a trypomastigote surface antigen-derived peptide (TSA-1(514-522) peptide) was selected for its stable binding to HLA-A*0201 molecules and used to generate a primary T. cruzi-specific human CD8(+) T cell line in vitro. We observed that DC infected with T. cruzi or treated with T. cruzi-conditioned medium (TCM) had a weaker capacity to present this peptide to the specific CD8(+) T cell line as shown in an IFN-gamma ELISPOT assay. Interestingly, T. cruzi or TCM also reduced the antigen presentation capacity of DC to CD8(+) T cell lines specific for the influenza virus M(58-66) or HIV RT(476-484) epitopes. This dysfunction appears to be linked essentially to reduced MHC class I molecule expression since the stimulation of the RT(476-484) peptide-specific CD8(+) T cell line was shown to depend mainly on the MHC class I-TCR interaction and not on the co-stimulatory signals which, however, were also inhibited by T. cruzi. This impairment of DC function may represent a novel mechanism reducing in vivo the host's ability to combat efficiently T. cruzi infection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/intimm/dxf077 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!