Chemical speciation controls the bioavailability and toxicity of metals in aquatic systems and regulatory agencies are recognizing this as they develop updated water quality criteria (WQC) for metals. The factors that affect bioavailability may be quantitatively evaluated with the biotic ligand model (BLM). Within the context of the BLM framework, the 'biotic ligand' is the site where metal binding results in the manifestation of a toxic effect. While the BLM does account for the speciation and complexation of dissolved metal in solution, and competition among the free metal ion and other cations for binding sites at the biotic ligand, it does not explicitly consider either the physiological effects of metals on aquatic organisms, or the direct effect of water chemistry parameters such as pH, Ca(2+)and Na(+) on the physiological state of the organism. Here, a physiologically-based model of survival time is described. In addition to incorporating the effects of water chemistry on metal availability to the organism, via the BLM, it also considers the interaction of water chemistry on the physiological condition of the organism, independent of its effect on metal availability. At the same time it explicitly considers the degree of interaction of these factors with the organism and how this affects the rate at which cumulative damage occurs. An example application of the model to toxicity data for rainbow trout exposed to silver is presented to illustrate how this framework may be used to predict survival time for alternative exposure durations. The sodium balance model (SBM) that is described herein, a specific application of a more generic ion balance model (IBM) framework, adds a new physiological dimension to the previously developed BLM. As such it also necessarily adds another layer of complexity to this already useful predictive framework. While the demonstrated capability of the SBM to predict effects in relation to exposure duration is a useful feature of this mechanistically-based framework, it is envisioned that, with suitable refinements, it may also have utility in other areas of toxicological and regulatory interest. Such areas include the analysis of time variable exposure conditions, residual after-effects of exposure to metals, acclimation, chronic toxicity and species and genus sensitivity. Each of these is of potential utility to longer-term ongoing efforts to develop and refine WQC for metals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1532-0456(02)00105-9DOI Listing

Publication Analysis

Top Keywords

biotic ligand
12
survival time
12
water chemistry
12
ligand model
8
physiologically-based model
8
model survival
8
rainbow trout
8
exposed silver
8
metals aquatic
8
wqc metals
8

Similar Publications

Plant endogenous signaling peptides shape growth, development and adaptations to biotic and abiotic stress. Here, we identify C-TERMINALLY ENCODED PEPTIDEs (CEPs) as immune-modulatory phytocytokines in Arabidopsis thaliana. Our data reveals that CEPs induce immune outputs and are required to mount resistance against the leaf-infecting bacterial pathogen Pseudomonas syringae pv.

View Article and Find Full Text PDF
Article Synopsis
  • Gadolinium (Gd) is a lanthanide metal that poses acute toxicity risks due to its use in technology, with toxicity reliant on ion concentrations and chemical speciation.
  • The Biotic Ligand Model (BLM) was developed to assess Gd's toxicity to the freshwater crustacean Daphnia magna, validated using various cation concentrations and real water samples from France and Germany.
  • Results showed that major cations like potassium, magnesium, and calcium compete with Gd for binding sites, leading to successful toxicity predictions in many freshwater samples, although challenges arose with high conductivity and low pH conditions.
View Article and Find Full Text PDF

Antagonistic systemin receptors integrate the activation and attenuation of systemic wound signaling in tomato.

Dev Cell

November 2024

Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China. Electronic address:

Pattern recognition receptor (PRR)-mediated perception of damage-associated molecular patterns (DAMPs) triggers the first line of inducible defenses in both plants and animals. Compared with animals, plants are sessile and regularly encounter physical damage by biotic and abiotic factors. A longstanding problem concerns how plants achieve a balance between wound defense response and normal growth, avoiding overcommitment to catastrophic defense.

View Article and Find Full Text PDF
Article Synopsis
  • Ferric Reductase Oxidase (FRO) genes are crucial for iron uptake in plants, and a study identified and analyzed 65 FRO homologs in four cotton species, revealing conserved functions and structures of these proteins.
  • *The research showed that FRO proteins are mainly localized to the plasma membrane and highlighted their evolutionary patterns through phylogenetic analysis, as well as variations in gene structure and chromosomal distribution.
  • *Additionally, expression profiling indicated that GhFRO interacts with specific proteins for metal ion transport and showed significant downregulation in response to stress conditions, offering valuable insights into iron homeostasis and stress adaptations in cotton.
View Article and Find Full Text PDF

Kaolinite bioformation at surface conditions: The role of fungi and bacteria.

Sci Total Environ

December 2024

Institute of Methodologies for Environmental Analysis - CNR, C.da S. Loja, Tito Scalo, Potenza, Italy; Italian Association for Clays (AISA - APS), Via Orabona 4, Bari, Italy. Electronic address:

Experiments aimed at studying the role of microorganisms in the formation of kaolinite from aluminosilicate solutions (Si:Al = 1:1) are reported. The experiments were carried out at room temperature in presence of living microorganisms, Leonardite humic acid, bacterial debris, bacterial exopolysaccharides (EPS), and some organic ligands. The bacterial debris, EPS, Leonardite and organic ligands were chosen to stabilize Al in octahedral coordination for allowing the crystallization of kaolinite.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!