The gene PTTG1 (encoding the pituitary tumor-transforming 1 protein) is overexpressed in several different tumor types, is tumorigenic in vivo and shows transcriptional activity. The PTTG1 protein is cell-cycle regulated and was identified as the human securin (a category of proteins involved in the regulation of sister-chromatid separation) on the basis of biochemical similarities with the Pds1p protein of budding yeast and the Cut2p protein of fission yeast. To unravel the function of human securin in oncogenesis, we carried out a phage-display screening to identify proteins that interact with securin. Notably, we isolated the p53 tumor suppressor. Pull-down and co-immunoprecipitation assays demonstrated that p53 interacts specifically with securin both in vitro and in vivo. This interaction blocks the specific binding of p53 to DNA and inhibits its transcriptional activity. Securin also inhibits the ability of p53 to induce cell death. Moreover, we observed that transfection of H1299 cells with securin induced an accumulation of G2 cells that compensated for the loss of G2 cells caused by transfection with p53. We demonstrated the physiological relevance of this interaction in PTTG1-deficient human tumor cells (PTTG1(-/-)): both apoptotic and transactivating functions of p53 were potentiated in these cells compared to parental cells. We propose that the oncogenic effect of increased expression of securin may result from modulation of p53 functions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/ng997 | DOI Listing |
Sci Rep
January 2025
Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.
Transcription factors (TFs), including steroidogenic factor-1 (SF-1), T-box transcription factor (TPIT) and pituitary transcription factor-1 (PIT-1), play a pivotal role in the cytodifferentiation of adenohypophysis. However, the impact of TFs on the growth patterns of nonfunctioning pituitary adenomas (NFPAs) remains unclear. This study aims to investigate the correlation between the expression of TFs and NFPAs growth patterns.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
January 2025
Department of Medical Genetics, China Medical University, Shenyang, People's Republic of China.
Krüppel-like factor 6 (KLF6) knockdown provides protection against kidney ischemia/reperfusion injury and ischemic stroke. However, it is unclear whether it plays a role in myocardial infarction (MI). Here, the expression of KLF6 was analyzed using the Gene Expression Omnibus (GEO) database and determined in patients with MI.
View Article and Find Full Text PDFMol Med Rep
February 2025
Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China.
Long noncoding RNA (lncRNA) PTTG3P has been demonstrated to participate in the development of hepatocellular carcinoma (HCC) by targeting the mRNA PTTG1. The present study aimed to investigate the diagnostic efficacy of serum lncRNA PTTG3P, mRNA PTTG1 and their combination for the diagnosis and prognosis of HCC. A total of 373 participants were enrolled in the present study, including 73 patients with HCC, 100 patients with chronic hepatitis B (CHB), 100 patients with liver cirrhosis (LC) and 100 healthy controls (HCs).
View Article and Find Full Text PDFJ Cell Biol
February 2025
Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA.
Separase regulates multiple aspects of the metaphase-to-anaphase transition. Separase cleaves cohesin to allow chromosome segregation and localizes to vesicles to promote exocytosis. The anaphase-promoting complex/cyclosome (APC/C) activates separase by ubiquitinating its inhibitory chaperone, securin, triggering its degradation.
View Article and Find Full Text PDFBMC Cancer
October 2024
Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China.
Background: Pituitary tumor-transforming gene 1 (PTTG1) is an important gene in tumour development. However, the relevance of PTTG1 in tumour prognosis, immunotherapy response, and medication sensitivity in human pan-cancer has to be determined.
Methods: TIMER, GEPIA, the human protein atlas, GEPIA, TISCH2, and cBioportal examined the gene expression, protein expression, prognostic value, and genetic modification landscape of PTTG1 in 33 malignancies based on the TCGA cohort.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!