Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Friedreich's ataxia is caused by a deficit in frataxin, a small mitochondrial protein of unknown function that has been conserved during evolution. Previous studies have pointed out a role for frataxin in mitochondrial iron-sulfur (Fe-S) metabolism. Here, we have analyzed the incorporation of Fe-S clusters into yeast ferredoxin imported into isolated energized mitochondria from cells grown in the presence of glycerol, an obligatory respiratory carbon source. Similar amounts of apo-ferredoxin precursor were imported into mitochondria and processed in wild-type and yfh1-deleted (delta YF111) strains. However, the incorporation of Fe-S clusters into apo-ferredoxin was significantly reduced in delta YFH1 mitochondria. The newly assembled ferredoxin was stable, excluding the possibility that the decreased incorporation was a result of increased oxidative damage. When delta YFH1 cells were grown in raffinose medium, the formation of holo-ferredoxin was low, as a consequence of the decrease in ferredoxin precursor import into mitochondria. However, the decrease in the conversion rate of apo- into holo-ferredoxin was in the same range as for glycerol-grown cells, indicating that the extent of the defect in Fe-S protein assembly is similar under different physiological conditions. These data show that frataxin is not essential for Fe-S protein assembly, but improves the efficiency of the process. The large variations observed in the activity of Fe-S cluster proteins under different physiological conditions result from secondary defects in the physiology of delta YFH1 cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/hmg/11.21.2635 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!