The aryl hydrocarbon receptor nuclear transporter (ARNT) is a member of the basic helix-loop-helix/PAS (Per-ARNT-Sim) family of transcription factors, which are important for cell regulation in response to environmental conditions. ARNT is an indispensable partner of the aryl hydrocarbon receptor (AHR) or hypoxia-inducible factor-1alpha. This protein is also able to form homodimers such as ARNT/ARNT. However, the molecular mechanism that regulates the transcriptional activity of ARNT remains to be elucidated. Here, we report that ARNT is modified by SUMO-1 chiefly at Lys(245) within the PAS domain of this protein, both in vivo and in vitro. Substitution of the target lysine with alanine enhanced the transcriptional potential of ARNT per se. Furthermore, green fluorescent protein-fused ARNT tended to form nuclear foci in approximately 20% of the transfected cells, and the foci partly colocalized with PML nuclear bodies. PML, one of the well known substrates for sumoylation, was found to augment the transcriptional activities of ARNT. ARNT bound AHR or PML, whereas the sumoylated form of ARNT associated with AHR, but not with PML, resulting in a reduced effect of PML on transactivation by ARNT. Our data suggest that the sumoylation of ARNT modulates its transcriptional role through affecting the ability of ARNT to interact with cooperative molecules such as PML. This exemplifies a crucial role of protein sumoylation in modulating protein-protein interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M205987200 | DOI Listing |
Environ Health (Wash)
January 2025
Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States.
In May 2021, the M/V ship fire disaster led to the largest maritime spill of resin pellets (nurdles) and burnt plastic (pyroplastic). Field samples collected from beaches in Sri Lanka nearest to the ship comprised nurdles and pieces of pyroplastic. Three years later, the toxicity of the spilled material remains unresolved.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Shanghai Key Laboratory of Bio-Energy Crops, Synthetic Biology Research Center, School of Life Sciences, Shanghai University, Shanghai, China.
It is known that red light irradiation enhances the biosynthesis of (E)-β-caryophyllene in plants. However, the underlying mechanism connecting red light to (E)-β-caryophyllene biosynthesis remains elusive. This study reveals a molecular cascade involving the phyB-PIF4-MYC2 module, which regulates (E)-β-caryophyllene biosynthesis in response to the red light signal in Arabidopsis thaliana.
View Article and Find Full Text PDFFront Immunol
January 2025
Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Background: The Aryl Hydrocarbon Receptor (AhR) pathway significantly influences immune cell regulation, impacting the effectiveness of immunotherapy and patient outcomes in melanoma. However, the specific downstream targets and mechanisms by which AhR influences melanoma remain insufficiently understood.
Methods: Melanoma samples from The Cancer Genome Atlas (TCGA) and normal skin tissues from the Genotype-Tissue Expression (GTEx) database were analyzed to identify differentially expressed genes, which were intersected with a curated list of AhR-related pathway genes.
Food Chem Toxicol
January 2025
Department of Biochemical Science and Technology, National Chiayi University, Chiayi, 60004, Taiwan, ROC. Electronic address:
Dexlansoprazole, a proton pump inhibitor, is commonly used to treat gastro-oesophageal reflux disease and erosive esophagitis. The activated aryl hydrocarbon receptor (AhR) functions as a transcription factor by binding to the aryl hydrocarbon response element (AHRE) of its target genes, with cytochrome P450 (CYP) 1A1 being the most well-known target. In this study, we demonstrated that dexlansoprazole stimulates AhR activity, leading to increased CYP1A1 expression.
View Article and Find Full Text PDFToxicol Lett
January 2025
Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic. Electronic address:
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor, which plays numerous and pivotal roles in human physiology and pathophysiology. Therefore, pharmacotherapeutic targeting of the AhR is a highly pertinent issue. The identification of new AhR ligands and the characterization of the interactions between the AhR ligands and AhR protein requires appropriate methodology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!