Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: Carney complex (CNC) is an autosomal dominant multiple neoplasia syndrome featuring cardiac, endocrine, cutaneous and neural tumours, as well as a variety of pigmented lesions of the skin and mucosa. Pituitary GH-secreting tumours are found in approximately 10% of patients with CNC. One of the genes responsible for CNC, the PRKAR1A gene located on human chromosome 17q22-24, has recently been cloned. This represents a putative tumour suppressor gene, coding for the type 1alpha regulatory subunit of protein kinase A (PKA), which is found to be mutated in approximately half of the patients with CNC. However, it is currently unclear as to whether similar mutations occur in sporadic pituitary tumours. We have therefore investigated a series of GH-secreting and other pituitary tumours for sequence abnormalities in the PRKAR1A gene. The mRNA produced by the PRKAR1A undergoes decay if it codes for a truncated protein; we therefore also determined PRKAR1A mRNA levels in the tumours, and compared them with known mutant PRKAR1A-carrying lymphocyte samples.
Methods: We extracted RNA from a series of pituitary tumours, reverse transcribed it to cDNA, and directly sequenced the PRKAR1A coding sequence in 17 GH-secreting, three prolactin-secreting, three ACTH-secreting, one FSH-secreting and 10 nonfunctioning pituitary tumours. Lymphocyte and tumour tissue RNA from two patients with CNC was used as positive controls. Using duplex polymerase chain reaction (PCR) with the PRKAR1A and the "housekeeping" gene GAPDH, we determined the relative expression of the PRKAR1A gene in the unknown as well as in the positive control samples.
Results And Conclusion: No mutations were found in any of the exons sequenced. Relative mRNA expression was not decreased in any of the sporadic pituitary tumour samples. The present data thus do not suggest a major role for the PRKAR1A tumour suppressor gene in sporadic GH-secreting or other pituitary tumours.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1365-2265.2002.01643.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!