A family of polymeric coordination networks based on meta-pyridylphosphonate bridging ligands has been synthesized and characterized by single-crystal X-ray crystallography. Compounds [M(2)(L-Et)(4)(mu-H(2)O)] (M = Mn, 1; Co, 2; Ni, 3; L-Et = ethyl-4-[2-(3-pyridyl)ethenyl]phenylphosphonate) were obtained by hydro(solvo)thermal reactions between diethyl-4-[2-(3-pyridyl)ethenyl]phenylphosphonate (L-Et(2)) and corresponding metal salts, while [Cd(L-H)(2)], 4 (L-H is monoprotonated 4-[2-(3-pyridyl)ethenyl]phenylphosphonate), was obtained by a hydro(solvo)thermal reaction between (L-H(2)).HBr and Cd(CF(3)SO(3))(2).6H(2)O. Compounds 1-3 are isostructural and crystallize in noncentrosymmetric space group Fdd2, and they adopt a complicated 3D framework structure composed of [M(2)(L-Et)(4)(mu-H(2)O)] building units, while compound 4 adopts a centrosymmetric 3D network structure resulted from linking 1D sinusoidal cadmium phosphate chains with L-H bridging ligands. Consistent with their polar structures, compounds 1-3 exhibit powder second harmonic generation signals larger than that of potassium dihydrogen phosphate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic025819n | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!