Direct addition of Zr-C bonds of alkylzirconocenes to activated alkenes.

J Org Chem

Catalysis Research Center and Graduate School of Pharmaceutical Sciences, Hokkaido University, and CREST, Science and Technology Corporation (JST), Sapporo 060-0811, Japan.

Published: October 2002

Direct addition of alkylzirconocenes to activated alkenes was found, for the first time. Octyl- and decylzirconocene chloride reacted with benzylidenemalononitrile to give the corresponding addition products after hydrolysis in 86% and 79% yield, respectively. Zirconacyclopentanes showed a similar reactivity toward activated alkenes with a two-electron-withdrawing group. On the other hand, treatment of the reaction mixture of zirconacyclopentanes and ylidenemalononitriles with iodine afforded six-membered cyclic compounds in high yields. The diastereoselectivity of the cyclized compound was remarkably high and the high selectivity originated from the Zr-promoted cyclization. The structures of cyclic compounds 10b and the major diastereoisomer of 10d were determined by X-ray analysis. Zirconacyclopentenes reacted with ylidenemalononitrile with high chemoselectivity in which the sp(3)-carbon attached to zirconium reacted with ylidenemalononitrile.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo0260701DOI Listing

Publication Analysis

Top Keywords

activated alkenes
12
direct addition
8
alkylzirconocenes activated
8
cyclic compounds
8
reacted ylidenemalononitrile
8
addition zr-c
4
zr-c bonds
4
bonds alkylzirconocenes
4
alkenes direct
4
addition alkylzirconocenes
4

Similar Publications

Purpose Of Review: The term metabolic dysfunction-associated steatotic liver disease (MASLD) refers to a group of progressive steatotic liver conditions that include metabolic dysfunction-associated steatohepatitis (MASH), which has varying degrees of liver fibrosis and may advance to cirrhosis, and independent hepatic steatosis. MASLD has a complex underlying mechanism, with patients exhibiting diverse causes and phases of the disease. India has a pool prevalence of MASLD of 38.

View Article and Find Full Text PDF

The vertebrate visual cycle hinges on enzymatically converting all--retinol (at-ROL) into 11--retinal (11c-RAL), the chromophore that binds to opsins in photoreceptors, forming light-responsive pigments. When struck by a photon, these pigments activate the phototransduction pathway and initiate the process of vision. The enzymatic isomerization of at-ROL, crucial for restoring the visual pigments and preparing them to receive new light stimuli, relies on various enzymes found in both the photoreceptors and retinal pigment epithelium cells.

View Article and Find Full Text PDF

Manganese-Catalyzed Electrochemical Amination of Activated Alkenes.

Chem Asian J

January 2025

Visva-Bharati University: Visva-Bharati, Chemistry, Santiniketan Road, 731235, Santiniketan, Bolpur, INDIA.

We have unveiled a new manganese-catalyzed electrochemical amination method to transform activated alkenes into a diverse array of vinyl amines harnessing sodium azide as the aminating reagent. The strategy claims notable versatility by accommodating a broad spectrum of substrates, demonstrating good compatibility with diverse functional groups, as well as delivering a moderate to good range of yields. The successful late-stage functionalization further underscores its practical utility.

View Article and Find Full Text PDF

We synthesized ,-dimethylformamide (DMF)-stabilized manganese nanoparticles (Mn NPs) in a one-step process under air using manganese(ii) chloride as the precursor. The Mn NPs were characterized in terms of particle size, oxidation state, and local structure using annular dark-field scanning transmission electron microscopy (ADF-STEM), X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XAS). The results indicate that Mn NPs are divalent nanosized particles with Mn-O bonds.

View Article and Find Full Text PDF

Reactivity of Anomalous Aziridines for Versatile Access to High Fsp Amine Chemical Space.

Acc Chem Res

January 2025

Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States.

ConspectusThe manipulation of strained rings is a powerful strategy for accessing the valuable chemical frameworks present in natural products and active pharmaceutical ingredients. Aziridines, the smallest N-containing heterocycles, have long served as building blocks for constructing more complex amine-containing scaffolds. Traditionally, the reactivity of typical aziridines has been focused on ring-opening by nucleophiles or the formation of 1,3-dipoles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!