A facile construction of the typical framework of narcissus alkaloids has been realized by virtue of the development of a practical route involving stereocontrolled epoxide formation and SnCl(4)-catalyzed arene-epoxide coupling. To achieve this goal, it proved to be necessary to devise a strategy that would enable chemical transformations to install an epoxy moiety in a congested environment. The successful preparation of a hindered epoxide from O-isopropylidene-protected 4-aminocyclohexenol required three steps consisting principally of controlled bromohydration and base-promoted closure and N-alkylation. It was found that a catalytic amount of SnCl(4) not only maintained the catalytic cycle but also effected clean arylation to form a fused BC ring system. Several tactics that ultimately proved to be unsatisfactory are also discussed in an effort to set important boundary limits on arene-epoxide coupling. The requisite enantiopure 4-aminocyclohexenol was available via an asymmetric cycloaddition of diene to camphor-based chloronitroso. The total synthesis of (+)-narciclasine was realized in nine steps with an overall yield of 19%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo020155k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!