A host race is a population that is partially reproductively isolated from other conspecific populations as a direct consequence of adaptation to a specific host. The initial step in host race formation is the establishment of genetically based polymorphisms in, for example, morphology, preference, or performance. In this study we investigated whether polymorphisms observed in Galerucella nymphaeae have a genetic component. Galerucella nymphaeae, the water lily leaf beetle, is a herbivore which feeds and oviposits on the plant hosts Nuphar lutea and Nymphaea alba (both Nymphaeaceae) and Rumex hydrolapathum and Polygonum amphibium (both Polygonaceae). A full reciprocal crossing scheme (16 crosses, each replicated 10 times) and subsequent transplantation of 1,001 egg clutches revealed a genetic basis for differences in body length and mandibular width. The heritability value of these traits, based on midparent-offspring regression, ranged between 0.53 and 0.83 for the different diets. Offspring from Nymphaeaceae parents were on average 12% larger and had on average 18% larger mandibles than offspring from Polygonaceae parents. Furthermore, highly significant correlations were found between feeding preference of the offspring and the feeding preference of their parents. Finally, two fitness components were measured: development time and survival. Development time was influenced by diet, survival both by cross type and diet, the latter of which suggest adaptation of the beetles. This suggestion is strengthened by a highly significant cross x diet interaction effect for development time as well as for survival, which is generally believed to indicate local adaptation. Although no absolute genetic incompatibility among putative host races was observed, survival of the between-host family offspring, on each diet separately, was lower than the survival of the within-host family offspring on that particular host. Survival of offspring of two Nymphaeaceae parents was about two times higher on Nymphaeaceae than on Polygonaceae, whereas survival of offspring of two Polygonaceae parents was 11 times higher on Polygonaceae than on Nymphaeaceae (based on untransformed data). Based on these results, we conclude that genetically determined polymorphisms in morphology and feeding preference exist in G. nymphaeae, resulting in differential performance. Furthermore, in each diet separately, offspring of between-host family crosses were less fit than offspring of within-host family crosses. These results support the hypothesis that within this species two host races can be distinguished.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.0014-3820.2002.tb01473.xDOI Listing

Publication Analysis

Top Keywords

host races
12
galerucella nymphaeae
12
feeding preference
12
development time
12
offspring
9
genetically based
8
based polymorphisms
8
polymorphisms morphology
8
putative host
8
water lily
8

Similar Publications

How gene expression evolves to enable divergent ecological adaptation and how changes in gene expression relate to genomic architecture are pressing questions for understanding the mechanisms enabling adaptation and ecological speciation. Furthermore, how plasticity in gene expression can both contribute to and be affected by the process of ecological adaptation is crucial to understanding gene expression evolution, colonisation of novel niches and response to rapid environmental change. Here, we investigate the role of constitutive and plastic gene expression differences between host races, or host-specific ecotypes, of the peacock fly Tephritis conura, a thistle bud specialist.

View Article and Find Full Text PDF

Periodontitis disproportionately affects genetic ancestral/ethnic groups. To characterize the oral microbiome from different genetic ancestral/ethnic groups, we collected 161 dental plaque samples from self-identified African Americans (AAs), Caucasian Americans (CAs), and Hispanic Americans (HAs) with clinical gingival health or biofilm-induced gingivitis on an intact periodontium. DNA was extracted from these samples, and then DNA libraries were prepared and sequenced using an Illumina NovaSeq high-throughput sequencer.

View Article and Find Full Text PDF

Premise: Phelipanche ramosa is an economically damaging parasitic plant that has been reported in North America since the late 1800s. While this species comprises a variety of genetically distinct host races in its native range, the genetic composition of adventive populations in the New World remains unexplored. On the basis of morphological and ecological variation, some have suggested that the closely related P.

View Article and Find Full Text PDF

wilt of banana is a major production constraint in India, prompting banana growers to replace bananas with less remunerative crops. Effective disease management practices thus need to be developed and implemented to prevent further spread and damage caused by f. sp.

View Article and Find Full Text PDF

Race structure of in the Kansas wheat pathogen population.

Plant Dis

December 2024

Kansas State University, Plant Pathology, 4024 Throckmorton PSC, Manhattan, Kansas, United States, 66506.

Article Synopsis
  • Tan spot, a wheat disease caused by the pathogen Pyrenophora tritici-repentis, involves three necrotrophic effectors (Ptr ToxA, Ptr ToxB, and Ptr ToxC), and its variations are sorted into a race system based on their genetic combinations.
  • A survey in Kansas identified 63 isolates of Ptr, revealing that race 1, which includes the harmful Ptr ToxA, is the most prevalent, along with the existence of races 2, 3, and 4.
  • These findings suggest that wheat breeding efforts in Kansas should aim to reduce the susceptibility gene Tsn1 to enhance resistance against the pathogen, providing valuable insights for breeders and path
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!