Dendritic cells (DCs) are the most potent antigen producing cells (APCs) for initiation of immune responses including anti-tumor immune responses. In previous reports, it has been shown that DCs efficiently take up and process apoptotic or necrotic bodies of tumor cells. It has also been shown that DCs pulsed with tumor cell apoptotic bodies, lysates or peptides generate potent anti-tumor immune responses. Direct interactions between DCs and viable tumor cells, however, have not been clearly elucidated. We report that monocyte-derived, CD1a+ immature DCs (iDCs) significantly inhibit the growth of breast tumor cells in coculture and transwell experiments in the presence of soluble CD40 ligand (sCD40L), LPS or both. The growth inhibition effects correlated with cell cycle arrest and apoptosis of breast tumor cells. The effects were associated with morphological changes of tumor cells from a round shape to a flat, spindle shape. In contrast, no inhibition of proliferation or morphological changes was observed on normal PBMC, K562 or breast fibroblasts. Interestingly, iDCs undergoing maturation induced by sCD40L+LPS induced a much stronger growth inhibitory effect than iDCs alone or mature DCs treated with sCD40L+LPS. Fractionation of supernatants showed the anti-tumor effects were mediated by a TNF-alpha-dependent and -independent mechanism. Soluble FasL and TRAIL were not involved. Our findings suggest that maturing DCs have the intrinsic ability to induce cell-cycle arrest and apoptosis of breast tumor cells through soluble factors, but not normal cells, in addition to their Ag presentation function.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ijc.10656DOI Listing

Publication Analysis

Top Keywords

tumor cells
24
immune responses
12
breast tumor
12
cells
10
dendritic cells
8
soluble factors
8
cells dcs
8
anti-tumor immune
8
arrest apoptosis
8
apoptosis breast
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!