Download full-text PDF

Source

Publication Analysis

Top Keywords

tracing outward
4
outward course
4
course leukemia-lymphomas
4
tracing
1
course
1
leukemia-lymphomas
1

Similar Publications

Micron-scale colloidal particles with short-ranged attractions, e.g., colloids functionalized with single-stranded DNA oligomers, have emerged as a powerful platform for studying colloidal self-assembly phenomena with the long-term goal of identifying routes for metamaterial fabrication.

View Article and Find Full Text PDF
Article Synopsis
  • Carbon reserves in trees are influenced by past photosynthesis and can be dated using radiocarbon dating, allowing researchers to study their distribution and turnover.
  • A new process model was created to analyze how different tree species manage their carbon reserves, revealing that both young and old reserves coexist within a single tree and are significantly mixed.
  • Disturbances like drought, fire, and pests negatively affect reserve mixing and longevity, with older reserves showing notable age shifts after disturbances, suggesting that ecological variations across species play a critical role in reserve management.
View Article and Find Full Text PDF

Zn metal anodes experience dendritic growth and hydrogen evolution reactions (HER) in aqueous batteries. Herein, we propose an interface regulation strategy with a trace (1.4 × 10 mol kg) all-in-one epicatechin (EC) electrolyte additive to solve the above issues and reveal the roles of individual functional groups.

View Article and Find Full Text PDF

Turbulent bursting events have been classified into outward interactions (Q1), ejections (Q2), inward interactions (Q3), and sweeps (Q4) in various studies. Ejections (Q2) and sweeps (Q4) have been identified as significant contributors to time consumption, momentum flux, and sediment flux. Additionally, research has shown that the distribution of these events varies nonuniformly at different bed elevations.

View Article and Find Full Text PDF

Ligand-triggered activation of G protein-coupled receptors (GPCRs) relies on the phenomenon of loose allosteric coupling, which involves conformational alterations spanning from the extracellular ligand-binding domain to the cytoplasmic region, where interactions with G proteins occur. During the GPCR activation process, several intermediate and equilibrium states orchestrate the movement of the flexible and rigid transmembrane (TM) segments of the GPCR. Monitoring early conformational changes is important in unraveling the structural intricacies of the loose allosteric coupling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!