Characterization of T7 RNA polymerase transcription complexes assembled on nucleic acid scaffolds.

J Biol Chem

Morse Institute of Molecular Genetics, Department of Microbiology and Immunology, State University of New York Health Science Center at Brooklyn, Brooklyn, New York 11203-2098, USA.

Published: December 2002

We have used synthetic oligomers of DNA and RNA to assemble nucleic acid scaffolds that, when mixed with T7 RNA polymerase, allow the formation of functional transcription complexes. Manipulation of the scaffold structure allows the contribution of each element in the scaffold to transcription activity to be independently determined. The minimal scaffold that allows efficient extension after challenge with 200 mm NaCl consists of an 8-nt RNA primer hybridized to a DNA template (T strand) that extends 5-10 nt downstream. Constructs in which the RNA-DNA hybrid is less than or greater than 8 bp are less salt-resistant, and the hybrid cannot be extended beyond 12-13 bp. Although the presence of a complementary nontemplate strand downstream of the primer does not affect salt resistance, the presence of DNA upstream decreases resistance. The addition of a 4-nt unpaired "tail" to the 5' end of the primer increases salt resistance, as does the presence of an unpaired nontemplate strand in the region that contains the 8-bp hybrid (thereby generating an artificial transcription "bubble"). Scaffold complexes having these features remain active for over 1 week in the absence of salt and exhibit many of the properties of halted elongation complexes, including resistance to salt challenge, a similar trypsin cleavage pattern, and a similar pattern of RNA-RNA polymerase cross-linking.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M208923200DOI Listing

Publication Analysis

Top Keywords

rna polymerase
8
transcription complexes
8
nucleic acid
8
acid scaffolds
8
nontemplate strand
8
salt resistance
8
resistance presence
8
characterization rna
4
transcription
4
polymerase transcription
4

Similar Publications

Article Synopsis
  • RbpA is a critical protein for Mycobacterium tuberculosis growth, impacting transcription and antibiotic response, but its regulatory mechanisms are not fully understood.
  • Significant structural changes in RNA polymerase occur when it interacts with RbpA, revealing important amino acids for transcription regulation and dynamic behavior of the complex.
  • The study identifies potential ligands for RbpA's interaction site, laying the groundwork for future research on developing inhibitors that target RbpA's regulatory role in transcription.
View Article and Find Full Text PDF

Passion fruit (Passiflora edulis) is a commercially important crop known for its nutritional value, high antioxidant content, and use in beverages and desserts. Gulupa baciliform virus A (GBVA), tentatively named Badnavirus in the family Caulimoviridae, is a cryptic circular double-stranded DNA (dsDNA, ≈6,951 bps) virus recently reported in Colombia with asymptomatic infection of passion fruit (Sepúlveda et al. 2022).

View Article and Find Full Text PDF

The roots of Salvia yunnanensis, an herbaceous perennial widely distributed in Southwest China, is often used as a substitute for S. miltiorrhiza, a highly valued plant in traditional Chinese medicine (Wu et al. 2014).

View Article and Find Full Text PDF

sp. nov., a new hyphomycete from desertified rocky soil in southwest China.

Int J Syst Evol Microbiol

January 2025

Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, Yunnan, PR China.

Two strains of , identified based on morphology and phylogenetic analysis, were isolated from rocky desertification soils in Yunnan province. Phylogenetic analyses inferred from three loci (the internal transcribed spacer of the nuclear ribosomal RNA gene, β-tubulin and RNA polymerase II second-largest subunit) showed that the two strains formed a single clade and were introduced as a new species of , is characterized by having ampulliform or broadly fusiform conidiogenous cells and dark olivaceous-green, oblong-ellipsoidal conidia. Phylogenetically, is most closely related to , but it distinguishes the latter by longer and narrower conidia.

View Article and Find Full Text PDF

PIWI-interacting RNAs (piRNAs) are a class of small noncoding RNAs associated with PIWI proteins within the male germline, and they play significant roles in maintaining genome stability via the modulation of gene expression. The piRNAs are implicated in the progression of various cancers, but the simultaneous monitoring of multiple piRNAs remains a challenge. Herein, we construct a single-molecule biosensor based on polymerization-transcription-mediated target regeneration for the simultaneous one-pot detection of multiple piRNAs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!